
Hashing

Huy L. Nguy�ên

In this note, we will study hashing, a fundamental data structure in computer science. This is

also a good setting to develop some pro�ciency with probability, which will become useful later.

Hashing is a solution to the dictionary problem. In fact, the solution has become so synonymous

with the problem that in some programming languages, a hash table is called a �dictionary�. In the

dictionary problem, we would like to maintain a dynamic database of up to n keys where we can

insert and delete keys and quickly look up the associated data of any given key.

Formally, the data structure needs to store a subset S of a large universe U . The size of S,
denoted by |S| = n, is typically much smaller than the size of U . For each key x ∈ U , we would

like to support 3 operations:

• insert(x): insert x into S.

• delete(x): delete x from S.

• lookup(x): check if x is in S.

The approach of hashing is to map objects from the universe U to a hash table with m slots,

with m much smaller than the size of U :

h : U → [m]

where [m] denotes the set {0, 1, 2, . . . ,m − 1}. In general, there can be two keys x, y ∈ U that

are mapped to the same slot i.e. h(x) = h(y). This is called a collision.

One way to deal with collision is hashing with chaining: for each slot in the hash table, we store

a linked list of keys that are mapped to that slot. When we look up a key x, we can go to the slot

h(x) and search for x in the linked list at that slot.

Question: what is the running time of lookup(x)?

The running time of lookup(x) is proportional to the length of the linked list at h(x). Thus, for
the algorithm to be fast, it is important to make the linked lists short.

Question: the keys we would like to hash are 128-bit integers. Should we just use MD5 (a public

deterministic cryptographic hash function)?

While there is no single hash function that is good for all inputs, the approach we take will be

to designate a set of hash functions H and when we need to hash a �xed input S, we will pick a

random function h ∈ H and hope that on average, we will achieve a good performance.

The performance of a hash function is governed by the following three key metrics:

• Speed the time it takes to compute h(x)

• Space the size of the random seed to select h from the family H

• Relation of the hash values h(x) for di�erent x's

1

1 Universal hashing

As we saw above, the speed of lookup(x) depends on the number of collisions x has in the table.

Thus, a desirable property of the hash table is that for any two keys x, y, the probability that they

collide is low. This consideration motivates the following de�nition.

De�nition 1.1 (Carter and Wegman `79). A family H is universal if for any two distinct keys x
and y in U ,

Pr
h∈H

[h(x) = h(y)] ≤ 1

m

For many applications, it su�ces to have a slightly weaker guarantee that

Pr
h∈H

[h(x) = h(y)] ≤ c

m

for some small constant c. This property is called c-universal.

Question: For m > |U |, is the family with just the identity function h(x) = x a universal hash

family?

Question: If a hash family H has collision probability 0, how large must m be?

2 Probabilty review

As we saw, the running time of look up depends on the number of keys with same hash value. Let's

see what we can show assuming that the hash family is c-universal. This is also an opportunity to

review some probability.

Let X be a random variable that takes value v with probability pv. The expectation of X is

de�ned as

E[X] =
∑
v

v · pv

Example: X is the number of heads in a fair coin toss. X takes value 1 with probability 1/2
and 0 with probability 1/2. The expectation of X is E[X] = 1 · 12 + 0 · 12 = 1

2 .

The linearity of expectation property states that

E[X1 +X2] = E[X1] + E[X2]

This property is useful for analyzing the expectation of complicated random variable.

Example: X is the number of heads in 100 fair coin tosses. Let Xi be the number of heads in

the ith coin toss. We have

E[X] = E[X1] + · · ·+ E[X100] =
1

2
· 100 = 50

Let's analyze the expected number of keys that are hashed to the same value as h(x). Let Xi

be the random variable that takes value 1 if h(i) = h(x) and value 0 otherwise. This is called an

indicator random variable.

By c-universality, the probability that Xi takes value 1 is c/m. Therefore, by linearity of

expectation, the expected number of keys with hash value h(x) is

c

m
· n =

cn

m

2

Question: what is the expected number of collision for a truly random function?

2.1 Markov's inequality

If X is a nonnegative random variable and a > 0 then Markov's inequality states that

Pr[X ≥ a] ≤ E[X]

a

Question: use Markov's inequality to bound the probability that we have at least c
√
n keys with

hash value 1.

3 A universal hash family

In this section, we will give an example of a universal hash family. Consider a prime p ∈ [|U |, 2|U |].
For each a ∈ {1, 2, . . . , p− 1} and b ∈ [p], de�ne

fa,b(x) = (ax+ b) mod p

ha,b(x) = fa,b(x) mod m

Let H be the family of all the functions ha,b. We will show that this family is universal. We will

need the following lemma.

Lemma 3.1. For any x 6= y ∈ U and s, t ∈ [p] the following system of equations with variables a, b
has exactly one solution.

(ax+ b) mod p = s

(ay + b) mod p = t

Proof. The solution is a = (y − x)−1(t− s) and b = s− ax.

We can now verify the de�nition of universality. Let s = fa,b(x) and t = fa,b(y). There are two
possibilities for collision. The �rst case is when s = t. However, this can only happens if a = 0,
which is not in our family.

Thus, collision can only happens when s 6= t and (s− t) mod m = 0. For a �xed s, the number

of choices for t leading to a collision is at most dp/me − 1 ≤ (p − 1)/m. There are p choices for s

so the number of pairs (s, t) leading to collision is at most p(p−1)
m .

For each pair (s, t), there is exactly one hash function with fa,b(x) = s, fa,b(y) = t. Thus, the

number of pairs (a, b) leading to a collision is at most p(p−1)
m . There are p(p − 1) choices for (a, b)

in our family.

Therefore, the probability of collision is at most

1

p(p− 1)
· p(p− 1)

m
=

1

m

3

