
Optimization using gradient descent

Huy L. Nguy�ên

In the next few lectures, we will talk about optimization using gradient descent. We saw earlier
in the course that when we have linear constraints and linear objective, we can optimize in polyno-
mial time. Unfortunately generalizing to non-linear constraints/objective makes the problem much
harder.

For instance, we can have a non-linear constraint that forces all variables to be either 0 or 1:∑
i

x2i (1− xi)2 = 0

Thus, optimization with this constraint is NP-hard.
Among non-linear problems, it turns out that convex problems (to be de�ned) are solvable in

polynomial time and non-convex problems are generally hard. Gradient descent is a popular method
for both of these types of problems. It can �nd the global optimum for convex problems under very
general conditions. For non-convex problems, it �nds a local optimum.

1 Calculus review and properties of convex functions

Consider a function f : Rn → R. The partial derivative of f with respect to xi is

∂f(x)

∂xi
= lim

ε→0

f(x+ εei)− f(x)

ε

For example, consider f : R2 → R where f(x) = x21 + 2x1x2.

∂f

∂x1
= 2x1 + 2x2;

∂f

∂x2
= 2x1

The gradient vector of f is

∇f(x) = Df(x)T =

 ∂f
∂x1
· · ·
∂f
∂xn


The gradient points in the direction where the function increases the most rapidly.

For functions with high dimensional output, f : Rn → Rm and f(x) = (f1(x), . . . , fm(x)), we
have the Jacobian matrix whose entries are the partial derivatives.

Df(x) =

 ∂f1∂x1
· · · ∂f1

∂xn
· · ·

∂fn
∂x1

· · · ∂fn
∂xn


The gradient gives us the best local approximation of a function f(x) around x0 using a linear

function.
f(x) ≈ f(x0) + 〈∇f(x0), x− x0〉

1



We can also try to approximate better using higher degree polynomials. The Hessian is the matrix
of second order partial derivatives of f :

∇2f(x) =


∂2f
∂x21

· · · ∂2f
∂x1∂xn

· · ·
∂2f

∂xn∂x1
· · · ∂2f

∂x2n


The Hessian is a symmetric matrix. The second order approximation of f around x0 is

f(x) ≈ f(x0) + 〈∇f(x0), x− x0〉+ (x− x0)T∇2f(x0)(x− x0)

More precisely, Taylor's theorem states that for any x, x0, there exists x1 on the line segment
between x and x0 such that

f(x) = f(x0) + 〈∇f(x0), x− x0〉+ (x− x0)T∇2f(x1)(x− x0)

We often compute derivatives of functions that are compositions of many simpler functions. The
following rules are often useful in such cases. Consider two function f : Rn → Rm and g : Rn → Rm

D(f + g) = Df +Dg

D(fT g) = gT (Df) + fT (Dg)

We also have the chain rule for composition of f : Rn → Rm and g : Rm → Rp to get h(x) = g(f(x)).

Dh(x) = Dg(f) ·Df(x)

A common use-case of the chain rule is the composition with an a�ne function. Consider
f : Rn → Rm and g(x) = f(Ax+ b).

Dg(x) = Df(Ax+ b) ·A

For the special case m = 1, we have

∇g = AT∇f
∇2g = AT∇2fA

2 Convex optimization

As mentioned before, general optimization is hard. However, we will focus on a special case that is
tractable: minimizing a convex function over a convex domain.

A set S is convex if for any two points x, y ∈ S, we have θx + (1 − θ)y ∈ S ∀θ ∈ [0, 1] i.e. the
whole line segment connecting x, y is in S.

A function f : Rn → R is convex if for any two points x, y in the domain and any θ ∈ [0, 1], we
have θf(x) + (1− θ)f(y) ≥ f(θx+ (1− θ)y). When the function is di�erentiable, it is convex if and
only if

f(y)− f(x) ≥ 〈∇f(x), y − x〉 ∀x, y

When the function is twice di�erentiable, it is convex if and only if the Hessian is positive semide�nite
i.e. yTH(f(x))y ≥ 0 ∀y.

The class of convex functions is actually rather broad. Below we consider a few examples.

2



• f(x) = log(ex1 + · · · + ex
n
) is convex in Rn. This fact is central to the multiplicative weight

updates.

• Every norm is convex. This is because it satis�es the triangle inequality.

• f(x) = ‖Ax− b‖22. This is the objective of least squares regression.

Why is minimizing a convex function over a convex set tractable? The following theorem gives
one explanation.

Theorem 2.1. Any local minimum is a global minimum.

Proof. Suppose x∗ is a local minimum and y 6= x is the global minimum.
Suppose that f(y) < f(x∗). For any θ ∈ [0, 1], we have f(θx∗+(1−θ)y) ≤ θf(x∗)+(1−θ)f(y) <

f(x∗). For θ close to 1, this contradicts the fact that x∗ is a local minimum.

Thus, our goal now is to �nd a local minimum.

Theorem 2.2. Consider a convex and di�erentiable f : Rn → R and a convex set S. A point x∗ is
a global minimum if and only if

〈∇f(x∗), x− x∗〉 ≥ 0 ∀x ∈ S

Proof. If 〈∇f(x∗), x− x∗〉 ≥ 0 ∀x then

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 ≥ f(x∗)

On the other hand, suppose that x∗ is a global minimum. Assume for contradiction that for
some x ∈ S, we have

〈∇f(x∗), x− x∗〉 < 0

Let g(θ) = f(x∗ + θ(x− x∗)). By Taylor's theorem at 0,

g(θ) = g(0) + g′(0)θ +O(θ2) = f(x∗) + 〈∇f(x∗), x− x∗〉+O(θ2)

For su�ciently small θ, g(θ) < g(0), which contradicts the fact that x∗ is a global minimum.

The proof reveals that if we are at a point x and there is a point y such that 〈∇f(x), y−x〉 < 0
then moving a bit in the direction y − x will decrease the function value.

3 Gradient descent

As noted above, if we have a current solution x and there is a direction y−x such that 〈∇f(x), y−
x〉 < 0 then we can improve the solution by moving a bit in that direction. Such a direction is called
a descent direction. When there are multiple descent directions, which one should we choose? One
strategy is greedy: go in the direction that descends the fastest, which is the gradient. This choice
leads to the gradient descent algorithm for minx∈Rn f(x).

1: Initialize x(0)

2: for t from 1 to T do

3: choose step size ηt
4: x(t) ← x(t−1) − ηt∇f(x(t−1))
5: end for

3



6: return x(T ) or 1
T

∑T
t=1 x

(t)

How should we choose the step? On the one hand, we would like to improve our solution quickly
and thus, pick a large step. On the other hand, as we move, the gradient also changes and we might
overshoot if the step is too large. There is no universal answer to this question. One possible answer
is to pick the best possible step size i.e. pick ηt to minimize f(x(t−1)−ηt∇f(x(t−1))). The downside
of this choice is that optimizing step size might be expensive. Other common choices are �xed step
size: ηt = η ∀t and time decaying step size: ηt = Θ(1/t).

Let's analyze the performance of the algorithm and see how to set the step sizes if we go with
the simpler options above. The idea is to use a potential function to track our progress. We will
use mainly two quantities to track how good our current solution is:

• Function value distance: f(x(t))− f(x∗)

• Distance to the optimum: ‖x(t) − x∗‖2

Our potential is a linear combination of these two quantities:

Φt = at(f(x(t))− f(x∗)) + bt‖x(t) − x∗‖2

In each time step, we will bound the change in the potential i.e. showing that Φt − Φt−1 ≤ Bt.
At the end, we take the telescoping sum and obtain

ΦT ≤ Φ0 +
T∑
i=1

Bt

4 Gradient descent with bounded gradient

To be able to set the step size and analyze the performance, we need to know a bit more about the
objective function. Suppose the length of the gradient of the function is always bounded by G. We
will analyze our algorithm with a �xed step size ηt = η ∀t and the potential Φt = 1

2η‖x
(t) − x∗‖2.

Φt − Φt−1 =
1

2η
(‖x(t) − x∗‖2 − ‖x(t−1) − x∗‖2)

=
1

2η

〈
x(t) − x(t−1), x(t) + x(t−1) − 2x∗

〉
=

1

2η

〈
−η∇f(x(t−1)),−η∇f(x(t−1)) + 2x(t−1) − 2x∗

〉
=

1

2η

(
η2‖∇f(x(t−1))‖2 + 2η〈∇f(x(t−1)), x∗ − x(t−1)〉

)
=
η

2
‖∇f(x(t−1))‖2 + 〈∇f(x(t−1)), x∗ − x(t−1)〉︸ ︷︷ ︸

≤f(x∗)−f(x(t−1))

≤ ηG2

2
+ f(x∗)− f(x(t−1))

Our telescoping sum gives us

ΦT − Φ0 ≤
TηG2

2
+

T∑
t=1

(f(x∗)− f(x(t−1)))

4



By shu�ing the terms around, we obtain

T∑
t=1

(f(x(t−1))− f(x∗)) ≤ TηG2

2
+ Φ0 − ΦT ≤

TηG2

2
+ Φ0

By convexity,
T∑
t=1

f(x(t− 1)) ≥ Tf

(
1

T

T∑
t=1

x(t−1)

)
=: f(x̄)

Therefore,

f

(
1

T

T∑
t=1

x(t−1)

)
− f(x∗) ≤ ηG2

2
+
‖x(0) − x∗‖2

2Tη

We would like to pick η to minimize the RHS. Suppose ‖x(0) − x∗‖ ≤ R.Thus,

ηG2

2
=

R2

2Tη
=⇒ η =

R

G
√
T

With this step size, our guarantee is

f(x̄)− f(x∗) ≤ RG√
T

This guarantee is usually referred to as 1√
T
convergence.

5 Smooth functions

We can obtain better results for more restrictive classes of functions. Recall that we can only set
a small step because the gradient changes as we change the solution. A function is smooth if the
change in the gradient is bounded by how far the solution changes. More precisely, a function is
β-smooth if for any two points x, y, we have

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖

Note that this implies for any x, y

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2

Thus, we can always bound the objective using a quadratic function. In order to �nd the next
location for the solution, we minimize the quadratic approximation at the current point. The
solution turns out to be ηt = 1/β. With this choice, we have

f(x(t)) ≤ f(x(t−1))− 1

2β
‖∇f(x(t−1)‖2 (1)

We analyze this algorithm using the potential Φt = t(f(x(t))− f(x∗)) + β
2 ‖x

(t) − x∗‖2.
The change in the potential is

Φt − Φt−1 = t(f(x(t))− f(x(t−1))) + (f(x(t−1))− f(x∗)) +
β

2
(‖x(t) − x∗‖2 − ‖x(t−1) − x∗‖2)

5



We can bound the second term using convexity:

f(x(t−1))− f(x∗) ≤ 〈∇f(x(t−1)), x(t−1) − x∗〉

We can bound the third term using the same argument as the general case:

β

2

(
‖x(t) − x∗‖2 − ‖x(t−1) − x∗‖2

)
=
β

2

(
〈x(t) − x(t−1), x(t) + x(t−1) − 2x∗〉

)
≤ β

2

(
η2t ‖∇f(x(t−1))‖2 + 2ηt〈∇f(x(t−1)), x∗ − x(t−1)〉

)
Notice that the inner product terms cancel and we are left with

Φt − Φt−1 ≤ −
t− 1

2β
‖∇f(x(t−1))‖2 ≤ 0

Therefore, the telescoping sum gives us

T (f(x(T ))− f(x∗)) ≤ ΦT ≤ Φ0 =
β

2
‖x(0) − x∗‖2

This is referred to as 1/T convergence.

6 Constrained optimization

We now extend our results to the constrained case minx∈S f(x) for a convex set S. In the un-
constrained case, we take the quadratic approximation of the function at the current solution and
the next solution is the minimizer of the quadratic approximation. Notice that this step is still
meaningful when we have constraints. Thus our algorithm is

x(t) ← argmin
z∈S

f(x(t−1)) + 〈∇f(x(t−1)), z − x(t−1)〉+
β

2
‖z − x(t−1)‖2

Another idea is to move in the direction of the gradient, which might take us out of the feasible
region, and then project back to the feasible region. In other words, our algorithm is

y(t) ← x(t−1) − ηt∇f(x(t−1))

x(t) ← argmin
x∈S

‖y(t) − x‖

It turns out that for step size ηt = 1/β, these two algorithms are identical. In order to analyze this
algorithm, we need a property of the projection operation.

Lemma 6.1. Given a convex set S, let a ∈ S and b′ ∈ Rn. Let b = argminx∈S
1
2‖x − b

′‖2. Then

〈a− b, b− b′〉 ≥ 0 and therefore, ‖a− b‖2 ≤ ‖a− b′‖2.

Proof. The lemma follows from the optimality of b. The gradient of 1
2‖x − b

′‖2 at x = b is b − b′.
Because of the optimality of b, we have 〈a− b, b− b′〉 ≥ 0.

Using this property, we obtain ‖x(t) − x∗‖2 ≤ ‖y(t) − x∗‖2 and we can observe that the rest of
the original proof goes through in the constrained setting.

6


