CS 4800: Algorithms &
Data

Lecture 23
April 14, 2017

Birthday paradox

* Pr[2"d person has different birthday from 15t person]
1

365

* Pr[3" person has different birthday from first two people,

provided that first two people have different birthdays]
2

365

* Probability first k people have different birthdays is
product of these terms

(13 (1-308) - (1 -350)

Birthday paradox

* Probability first k people have different birthdays is
product of these terms

 (1-3:) (1-35) - (1-35)

* How large does k need to be for prob. <% ?
e 23

Balls into bins

* n random birthdays among 365 choices
* n balls are thrown into m bins
 What is the distribution of the loads?

 Birthday paradox: what is minimum n so that the
probability some bin has at least 2 balls is > }47?

Balls into bins

* n balls are thrown into m bins

* How many empty bins?

* What is probability first bin is empty?

* Ball 1 misses bin 1 with probability 1 —1/m

1 n
* Probably n balls all miss bin 1 is (1 — —)

m

¢« ~ g /M

Hashing

* Assign a number to an object via a hash function
h:S—-{0,1,2,.., m—1}

* Make comparison easy
* Object u = object vonly if h(u) = h(v)
* Downside: h(u) = h(v) for some u # v (collision)

* |dea: pick h randomly so that for any u # v, the
chance h(u) = h(v) is low

* Idealized: for all u and i, Pr[h(u) = i] = %

Password checker

* User picks a password
* Want to check if password is a common word
* Dictionary of n common words

Checker using hash function

e Use an array of m bits
 All bits are initialized to O

* Hash every word w in dictionary

* If hash(w)=ithen set biti of array to 1
* On query:

* j=hash(password)

 If bitjis 1, reject password

Checker using hash function

* On query:
* j=hash(password)
 If bitjis 1, reject password

* If password is common word, Pr[reject] =1

* If password is not common,
* Prlaccept]| = Prlhash(w) # j for all common w]

= Pr[bin j is empty after n throws]

= (1-1/m)"~ exp(-n/m)

Checker using hash function

* |f password is not common,
* Prlaccept] = exp (—3)

m
* Example, n=100000 common words
* m=1000000 bits

* Prlaccept] = 90%

Bloom filter
* t hash functions hq, h,, ..., h;

* t bit arrays of size m/t each
All bits initialized to O

* Hash every word w in dictionary
 If h;(w) = ithensetbitiinarray3to1l
e Same for other tables

* On query qQ:
* j1= hi(q),jz = hy(q), ...
* If bit j; of array 1 is 0, accept password
* If bit j, of array 2 is O, accept password

* |If all those bits are 1, reject password

Bloom filter
* On query qQ:

* j1 = hi(q),j, = hy(q), ...
* If bit j; of array 1is 0, accept password
* If bit j, of array 2 is O, accept password

* If all those bits are 1, reject password
* If password is common word, Pr[reject] =1

* If password is not common,
* Pr|reject] = Pr|all arrays fail]

= (Prlarray 1 fails])®
= (1 - (1 - t/m)™)"

Bloom filter

* If password is not common,
* Pr[reject] == (1 — (1 — t/m)™)}

* Example, n=100000 common words

* M=500000 bits + M=1000000 bits
* t=5 tables -
* Pr[accept] = 90% Pr[accept] = 90%

String matching

* Given a text T and a pattern P

* Find in the text T all occurrences of P
* |dea: view each character as a digit

* T is a long sequence of digits

* Pisa |P|-digit number

* Each |P| consecutive charactersin T forma |P|-
digit number

* Want to compare these numbers against P

Streaming characters

e Maintain the number formed by latest |P]|
characters of the text

e Slide the window one character at a time

* Need to update original number N to form new N’

Streaming characters

e 1579 - 5794

* Delete first digit a, multiply by 10, add last digit b
« N’ =10(N — 10""1"1a) + b

* Slide window from left to right, in every step

e Form N’ from current N
 Compare N’ with pattern P

* Time: O(T)
* N might be too large to fit in an int

Rabin-Karp/rolling hash

* Pick a prime p
* h(N) =N mod p
* Instead of keeping track of N, only keep h(N)

h(N) = (10(N — 10'"1=*a) + b) mod p
= (10 ((N mod p) — (1071~ mod p)a) + b) mod p

