CS 4800: Algorithms &
Data

Lecture 21
April 7, 2017

Bipartite matching

Bipartite matching

O TN

Bipartite matching

* Given graph G = (L U R, E) where the edges are
between L and R

* Find the largest subset M € E such that each
vertex is incident to at most one edge in M

Reduction to max flow

& +
>‘§¢ +

All edges have capacity 1

Find max flow and return all middle edges e with f(e)=1

Correctness

Claim. If there is a matching of size k, then there is a flow
of value k.

Proof. Let M be a matching of size k. Construct a flow f as
follows.

If (x,y) € M set f(s,x) = f(x,y) = f(y,t) = 1.
Clearly f satisfies

* Capacity constraints

* Flow conservation

] = [M].

Correctness
Claim. If max flow = k then algorithm finds matching of
size k.

Proof. All capacities are integers so Ford-Fulkerson
algorithm finds integral flow.

M = {(x,y)s.t.xeL,y€ERand f(x,y) = 1}
Capacities are 1 so all edges have flow =0 or 1.

c(s,x)=1so each x € L is incident to at most one edge in M.
c(y,t)=1 so each y € R is incident to at most one edge in M.

Thus M is a matching.
|f| =k so there are exactly k vertices x € L with f(s,x)=1.
Each such x is incident to one edge in M and thus | M|=k.

Running time

* Each augmenting path increases flow value by 1
* Max flow is at most V

* Running time of Ford-Fulkerson for bipartite
matching is O(VE)

Network design

Edge-disjoint paths

 Given directed graph G = (V, E), source s,
destination t

* Find max number of edge-disjoint paths from stot

Communication network| irotection aiainst link failure

Reduction to max flow

Assign capacity 1 to every edge.
Thm. Max # edge-disjoint paths = max flow.

Proof. <
Suppose there are k paths.

Put f(e)=1 for e on the paths, f(e)=0 otherwise.

Paths are edge-disjoint so f has k edges out of s, |f|=k.

Reduction to max flow
Thm. Max # edge-disjoint paths = max flow.

Proof. >
Suppose |f|= k.

Ford-Fulkerson implies there is an integral flow of value k
Consider edge (s,u) with f(s,u)=1.

By flow conservation, there exists (u,v) with f(u,v)=1.
Repeatedly apply flow conservation to trace out a path to t.
|f|=k so k edges e out of s with f(e)=1 — k edge disjoint paths.

Node-disjoint paths

 Given directed graph G = (V, E), source s,
destination t

* Find max number of node-disjoint paths fromstot

Communication network, irotection aiainst machine failure

Reduction to max flow

Image segmentation

Image segmentation

* Foreground/background segmentation
* Label each pixel as foreground/background

* V=set of pixels, E=neighboring pixels

N2
N\

* a; = 0: likelihood of pixel i in foreground

* b; = 0: likelihood of pixel i in background

* p;j = 0: penalty of separating pixels i, |

e Goal: find partition that maximize # correct labels
* A formulation: findf:rtition V=(A,B) that maximizes

zai+ b] — 2 pl]

I€EA JEB (i,))€E,|An{i,j}=1

Reduction to min cut

* Maximizing
YarTu- S
IEA JEB (i,j))€E,|AN{i,j}|=1
* |s minimizing
Seryn-(YarTn- S o)
IEV JEV IEA JEB (i,j))eE,|JAN{i,j}|=1
* New objective

manal+zb]+ z pl]

iEB JEA (i,))€E,|An{i,j}=1

Reduction to min cut

e Add source s and sink t

Densest subgraph

Community detection

* Social network graph G = (V, E)

* Tight-knit community = dense subgraph

2E(S,S)
N

* Find densest subgraph S c V that maximizes

Goldberg’s algorithm

|E(S,)l
.2E|SS|S = < /
< 21E(S, S)| = c|S|

* Yesdeg(v) — [E(S,S)| = c|S]
* 2vey deg(v) — X csdeg(v) — |E(5; S| = c|S]|
« > csdeg(v) + |E(S,S)| + c|S| < 2|E]

Goldberg’s algorithm
S S

Cutcost =Y .sdeg(v) + |E(S,S)| + c|S]

Check if min cut < 2|E

