
CS 4800: Algorithms & 
Data

Lecture 17

March 21, 2017



Shortest paths



What is the fastest way to get 
from A to B?

3

6
8

10

9
5

13

11

Positive edge weights



Directed graphs

3

6
8

10

9
5

13

11

Positive edge weights



Dynamic programming

• Source vertex s

• d(v): length of shortest tentative path from s to v

• d*(v): length of shortest path from s to v

• pred(v): predecessor of v in shortest tentative path 
from s to v



Optimal substructure

• Consider shortest path P from s to v

• Let u be a vertex on P

• The subpath of P from s to u must be shortest path from s to u

• If there is a shorter path from s to u then there is a shorter path 
from s to v than P

s
v

u



Relation among shortest distances

• Consider arbitrary edge (u,v)

• 𝑑∗ 𝑣 ≤ 𝑑∗ 𝑢 + 𝑤(𝑢, 𝑣)

• The path 𝑠 → 𝑢 → 𝑣 is a feasible path from s to v

• Edge (u,v) is tense if 𝑑 𝑣 > 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• When a tense edge is found, can improve 𝑑(𝑣)

s

u
v



Generic shortest path algorithm

• Initialize 𝑑(𝑠) = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝑄 ← {𝑠}

• While 𝑄 ≠ ∅

• Remove some u from Q

• For all edges 𝑢 → 𝑣

• If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑑 𝑣 ← 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑝𝑟𝑒𝑑(𝑣) ← 𝑢

• If 𝑣 ∉ 𝑄, put 𝑣 in 𝑄. Otherwise, DecreaseKey(𝑣).



Dijkstra’s algorithm

• Initialize 𝑑(𝑠) = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝑄 ← {𝑠}

• While 𝑄 ≠ ∅

• Remove u with minimum d(u) from Q

• For all edges 𝑢 → 𝑣

• If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑑 𝑣 ← 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑝𝑟𝑒𝑑(𝑣) ← 𝑢

• If 𝑣 ∉ 𝑄, put 𝑣 in 𝑄. Otherwise, DecreaseKey(𝑣).



Example

3

6
8

7

9
5

13

11

∞

∞

∞

∞

0

Q: x

3

19

11

x

10

x x

32

x



Correctness of Dijkstra’s
Theorem. Let S be set of nodes removed from Q. For all v in S, we have 
d(v)=d*(v) when v is removed from Q.

Proof. Induction over number of iterations.

First node to be removed is s and 𝑑 𝑠 = 𝑑∗(𝑠) = 0.

Assume claim is true for first k nodes.

Let v be the k+1st about to be removed. Let u = pred(v). 

s
u v



Correctness of Dijkstra’s
Let v be the k+1st about to be removed. Let u = pred(v). 

u is removed from Q before (when we set pred(v) = u), so d(u) = d*(u).

Consider any other path P from s to v not via edge (u,v).

s
u v

x y
P must leave S at some point via edge (x,y).

v is about to be removed, not y, so 𝑑(𝑣) ≤ 𝑑(𝑦).

Thus, 𝑑(𝑣) ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑃). 

Therefore, 𝑑(𝑣) = 𝑑∗(𝑣).

x is removed from Q so 𝑑 𝑥 = 𝑑∗ 𝑥

𝑑 𝑦 ≤ 𝑑 𝑥 + 𝑤(𝑥, 𝑦) ≤ distance from s to y on P



Running time

• Initialize 𝑑(𝑠) = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝑄 ← {𝑠}

• While 𝑄 ≠ ∅

• Remove u with minimum d(u) from Q

• For all edges 𝑢 → 𝑣

• If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑑 𝑣 ← 𝑑 𝑢 + 𝑤(𝑢, 𝑣)

• 𝑝𝑟𝑒𝑑(𝑣) ← 𝑢

• if 𝑣 ∉ 𝑄, insert 𝑣 into 𝑄. Otherwise DecreaseKey(v)

O(log V)

O(log V)

V times

E times

O((V+E)log V) time



Breadth-first search

• All edge weights are 1

• Distance = #edges on the path



Breadth-first search

• Initialize 𝑑(𝑠) = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

• 𝑄 ← (𝑠, )

• While 𝑄 ≠ ∅

• Remove first 𝒖 in 𝑸

• For all edges 𝑢 → 𝑣

• If 𝑑 𝑣 > 𝑑 𝑢 + 1

• 𝑑 𝑣 ← 𝑑 𝑢 + 1

• 𝑝𝑟𝑒𝑑(𝑣) ← 𝑢

• Put 𝒗 last in 𝑸

Q is a queue: first in first out


