
CS 4800: Algorithms & 
Data

Lecture 16

March 14, 2017



Minimum spanning tree (MST)

• G = (V, E, w), w positive

• Want a set of edges that connects all V and has 
minimum cost

• For simplicity, assume all weights are distinct

3

6
8

10

9
5

13



Blue rule

• Pick a set of nodes S

• Color minimum weight edge in cut induced by S 
blue

3

6
8

10

9
5

13



Red rule

• Pick a cycle C

• Color the maximum weight edge in C red

3

6
8

10

9
5

13



What we proved

• All blue edges belong to the minimum spanning 
tree

• All red edges do not belong to the minimum 
spanning tree



Generic algorithm

• Maintain an acyclic set of blue edges F

• Initially no edge is colored, 𝐹 = ∅

• Repeat the following in arbitrary order
• Consider a cut with no blue edge. Color the minimum 

weight edge in the cut blue.

• Consider a cycle with no red edge. Color the maximum 
weight edge in the cycle red.

• Terminate when V-1 edges colored blue.



Kruskal’s algorithm

• Consider edges in order of increasing weights

• When considering e=(u,v)
• If u and v are connected by F, color e red

• If u and v are not connected by F, color e blue

u

v

All edges on u to v path are 
colored/considered before (u,v)
→ have smaller weight than e

S={nodes 
connected 
to u by F}

𝑉 ∖ 𝑆

u v



Example

3 5 6 8 9 10 11 13

3

6
8

10

9
5

13

11

✓ ✓ ✓ ✓   

• Consider edges in order of increasing weights

• When considering e=(u,v)

• If u and v are connected by F, color e red

• If u and v are not connected by F, color e 
blue



Prim’s algorithm

• Pick an arbitrary root node u

• S = {nodes connected to u by blue edges}

• While 𝑆 ≠ 𝑉
• Apply blue rule to cut induced by S

u
𝑉 ∖ 𝑆

S={nodes 
connected
to u by F}



Example

3

6
8

10

9
5

13

11

• Pick an arbitrary root node u= 

• S = {nodes connected to u by blue 
edges}

• While 𝑆 ≠ 𝑉

• Apply blue rule to cut induced 
by S



Prim’s algorithm

• Pick an arbitrary root node u

• S = {nodes connected to u by blue edges}

• While 𝑆 ≠ 𝑉
• Apply blue rule to cut induced by S

u
𝑉 ∖ 𝑆

S={nodes 
connected
to u by F}

Need to maintain collection
of edges and find minimum



Priority queue

• Data structure maintaining collection of pairs (id, key)

• Insert: Insert a new pair (id, key) into the queue

• Find-min: Find the pair with minimum key

• Extract-min: Find the pair with minimum key and 
remove it from the queue

• Decrease-key(id, D): Decrease the key of element id 
to D



Binary heap

• Full binary tree

• Each node stores an (id, key) pair

• Key of parent is no larger than keys of children

2

3 7

8 5 9



Implicit binary heap

• Store as array Q[1…n]

• The children of node i are nodes 2i and 2i+1
2

3 7

8 5 9

Index 1 2 3 4 5 6

Key 2 3 7 8 5 9

Q[1]

Q[2] Q[3]

Q[4]
Q[5]

Q[6]



Insert

• Put new key at next available spot

• Bubble up to maintain heap
property

• Insert takes O(log n) time

2

3 7

8 5 9 1



Decrease-key

• Bubble up to maintain heap
property

• Decrease-key takes 
O(log n) time

2

3 7

8 5 9 10



Find-min

• Minimum is always at the top
of the heap

• Find-min runs in O(1)

2

3 7

8 5 9 1



Extract-min

• Remove top node

• Put bottom node at the top

• Bubble down to maintain
heap property

• Extract-min runs in O(log n) time

1

3 4

8 5 9 7



Running time of heap

Operation Binary heap Fibonacci heap

Insert O(log n) O(1)

Find-min O(1) O(1)

Extract-min O(log n) O(log n)

Decrease-key O(log n) O(1) (amortized)



Prim’s algorithm

• Pick root node u

• S = {nodes connected to u by blue edges}

• While 𝑆 ≠ 𝑉
• Find min weight edge between S and 𝑉 ∖ 𝑆 and color it 

blue

• Update S (new edges between S and 𝑉 ∖ 𝑆)

u
𝑉 ∖ 𝑆

S={nodes 
connected
to u by F}



Implementing Prim’s algorithm

• 𝑄 = ∅, 𝐹 = ∅

• Pick start node u, insert (u, 0) into 𝑄

• Insert (𝑣,∞) into 𝑄 for all vertices 𝑣 ≠ 𝑢

• Set 𝑝𝑟𝑒𝑑(𝑣) = 𝑢 for all vertices 𝑣

• While 𝑄 ≠ ∅

• 𝑧 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝑄)

• 𝐹 ← 𝐹 ∪ { 𝑧, 𝑝𝑟𝑒𝑑(𝑧) }

• For 𝑣 ∈ 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑧

• If 𝑣 ∈ 𝑄 and 𝑘𝑒𝑦(𝑣) > 𝑤(𝑧, 𝑣)

• DecreaseKey(𝑣,𝑤(𝑧, 𝑣))

• 𝑝𝑟𝑒𝑑(𝑣) ← 𝑧

O(log V)

O(log V)

V times

E times

O((V+E)log V) time

key(v) = min weight edge 
between v and S

u

z

𝑉 ∖ 𝑆

S={nodes 
connected
to u by F}

Find min weight edge between 
S and 𝑉 ∖ 𝑆 and color it blue

Update S (new 
edges between S 
and 𝑉 ∖ 𝑆)


