CS 4800: Algorithms &
Data

Lecture 16
March 14, 2017

Minimum spanning tree (MST)

3—/('!"\
&/~ 10
e S8
6' / -\
W - D
-

e G=(V, E, w), w positive

* Want a set of edges that connects all V and has
minimum cost

* For similicitil assume all weiihts are distinct

Blue rule

* Pick a set of nodes S

* Color minimum weight edge in cut induced by S
blue

Red rule

* Pick a cycle C

e Color the maximum weight edge in C rec

What we proved

e All blue edges belong to the minimum spanning
tree

e All redl =dzes do not belong to the minimum
spanning tree

Generic algorithm

* Maintain an acyclic set of blue edges F
* Initially no edge is colored, /' = @

* Repeat the following in arbitrary order

e Consider a cut with no blue edgze. Color the minimum
weight edge in the cut blue,

e Consider a cycle with no edge. Color the maximum
weight edge in the cycle

* Terminate when V-1 edges colored 1.

Kruskal’s algorithm

e Consider edges in order of increasing weights

* When considering e=(u,v)

* If uand v are connected by F, colore rec

 If uand v are not connected by I, color e blue
u

All edges on u to v path are
olored/considered before
ave smaller weight than e

* Consider edges in order of increasing weights

* When considering e=(u,v)
* |f uand v are connected by I, colore red

e |f uand v are not connected by , color e
blue

Prim’s algorithm

* Pick an arbitrary root node u

e S ={nodes connected to u by blue edges}

e WhileS =V
* Apply blue rule to cut induced by S

— oy,

* Pick an arbitrary root node u= @

* S={nodes connected to u by bIe
edges}
* While§S =V

* Apply blue rule to cut induced
VA

Prim’s algorithm

* Pick an arbitrary root node u

e S ={nodes connected to u by blue edges}
. Need to maintain collection
° Whlle S *V /ofedges and find minimum
* Apply blue rule to cut induced by S

—

Priority queue

e Data structure maintaining collection of pairs (id, key)
: Insert a new pair (id, key) into the queue
: Find the pair with minimum key

: Find the pair with minimum key and
remove it from the queue

: Decrease the key of element id
toD

Binary heap
e Full binary tree

* Each node stores an (id, key) pair
e Key of parent is no larger than keys of children

Camind
A
N N
\

Implicit binary heap

e Store as array Q[1...n]
* The children of node i are nodes 2i and 2i+1

Q[2] Q[3]
Q[4] Q[6]

Q[5]

Key 2 3 7 8 5 9

Insert
* Put new key at next available spot /'\
* Bubble up to maintain heap

property
* Insert takes O(log n) time

Decrease-key

* Bubble up to maintain heap

property /'\
* Decrease-key takes

O(log n) time

Find-min

* Minimum is always at the top
of the heap /'\
* Find-min runs in O(1) A A

Extract-min
* Remove top node
e Put bottom node at the top /'\
* Bubble down to maintain
heap property

e Extract-min runs in O(log n) time

Running time of heap

Operation Binary heap Fibonacci heap
Insert O(1)
Find-min O(1)

Extract-min O(log n)

Decrease-key O(1) (amortized)

Prim’s algorithm

* Pick root node u
* S ={nodes connected to u by blue edges}

* WhileS§S #V

* Find min weight edge between Sand V' \ S and color it
blue

e Update S (new edges between Sand I/ \ S)

- T~

@M

4 \
/ o
\
]

Implementing Prim’s algorithm

key(v) = min weight edge

betweenv and S
Q=®1F=® - T =~
P ~
A

* Pick start node u, insert (u, 0) into Q [\
* Insert (v, o) into Q for all vertices v # u ® \\
* Set pred(v) = u for all vertices v ® o /'
« While Q # ¢ ®

-— e =

Find min weight edge between

Vtimes ¢ z « ExtractMin(Q) < O(log V)
SandV \ S and color it biue

C 1 e 1 U{(z pred(z)}
* Forv € adjacent(z)
* Ifv e Qandkey(v) > w(z,v) Update S (new
E times * DecreaseKey(v,w(z,v)) < O(log V) z:ge; gest‘)"’ee” >
s pred(v) « z

