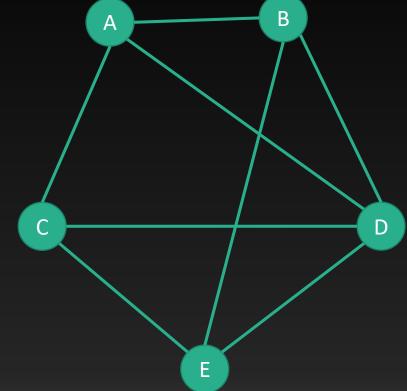
CS 4800: Algorithms & Data

Lecture 14 February 28, 2017

Graphs

- G = (V, E)
- Weight w(e) for edge e
- Undirected/directed



$$V = \{A, B, C, D, E\}$$

E = \{(A, B), (A, C), (A, D), (B, D), (B, E), (C, D), (C, E), (D, E)\}

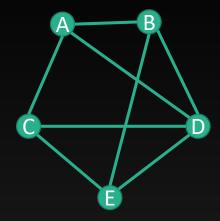
What do graphs model?

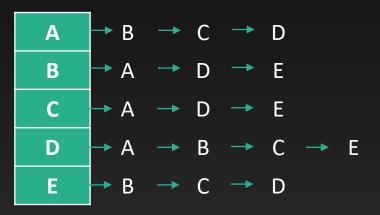
- Transportation network
 Digital image
 - Vertices: cities/locations
 - Edges: roads
- Communication network
 Large software
 - Vertices: computers/switches
 - Edges: cable links
- Social network
 - Vertices: people
 - Edges: social connection

- - Vertices: pixels
 - Edges: same objects
 - Vertices: modules
 - Edges: dependencies

Representation

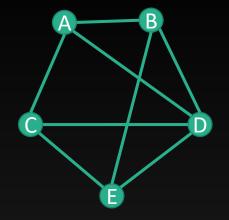
- Adjacency list
- Space: O(V+E)
- List neighbors: O(degree)
- Check edge existence: O(degree)





Representation

- Adjacency matrix
- Space: O(V²)
- List neighbors: O(V)
- Check edge existence: O(1)



	Α	В	C	D	E
Α	0	1	1	1	0
В	1	0	0	1	1
С	1	0	0	1	1
D	1	1	1	0	1
E	0	1	1	1	0

Path

- Path: sequence of nodes v_1 , v_2 , ..., v_k such that $(v_i, v_{i+1}) \in E$ for all i=1, ...,k-1
- Simple path: each vertex appears at most once
- Cycle: path with $v_1=v_k$ and k>1, each edge appears at most once
- Simple cycle: vertices v₁, v₂, ..., v_{k-1} are distinct

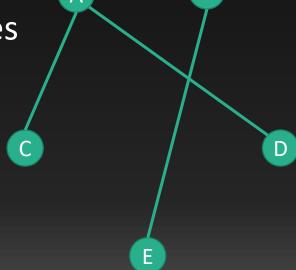
Tree

u & v are connected if there is a path from u to v

Connected graph: for any vertices u & v, there is a path from u to v

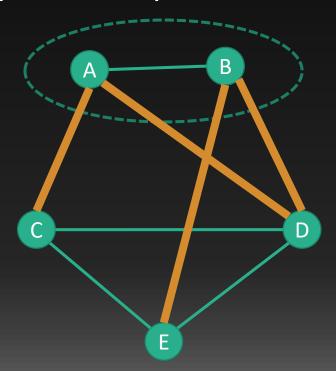
Tree: connected graph with no cycles

• Tree on n nodes has n-1 edges



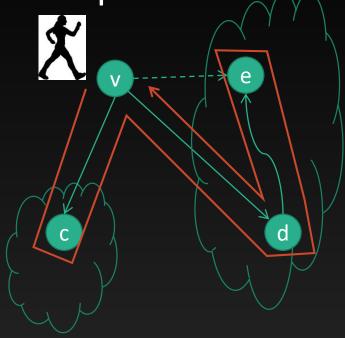
Cut

• Cut induced by subset $S \subset V$ is the set of edges with exactly one end point in S



(Depth-First) Search in Graph

- Search(vertex v)
 - $explored[v] \leftarrow 1$
 - For $(v, w) \in E$
 - If explored[w] = 0 then
 - $parent[w] \leftarrow v$
 - search(w)
 - post-visit(v)



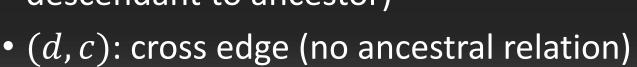
Search(v) explores all vertices reachable from v

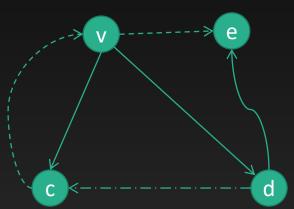
Connected components in undirected graphs

- Search(v) explores all vertices reachable from v
- These are exactly vertices in v's connected component
- DFS(G = (V,E))
 - For each $v \in V$
 - $explored[v] \leftarrow 0$
 - For each $v \in V$
 - If explored[v] = 0 then
 - search(v) // explores a new connected component

Search tree in directed graph

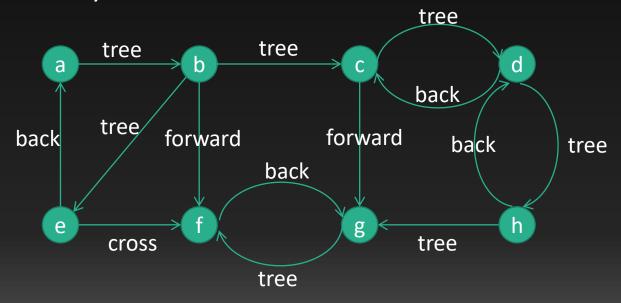
- The parent-child edges found by search() form a (directed) tree
- Tree edges: (v,c), (v,d), (d,e)
- (v, e): forward edge (edge from ancestor to descendant)
- (c, v): backward edge (edge from descendant to ancestor)





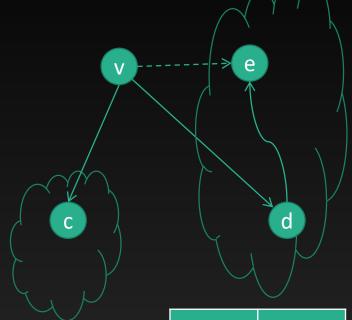
Exercise

 Label edges as tree/forward/backward/cross edges (assume we explore neighbors in alphabetical order from a)



(Depth-First) Search in Graph

- Search(vertex v)
 - $explored[v] \leftarrow 1$
 - For $(v, w) \in E$
 - If explored[w] = 0 then
 - $parent[w] \leftarrow v$
 - search(w)
 - post-visit(v)
- Keep global counter p initialized to 0
- In post-visit(v), increase p and set postorder[v] = p

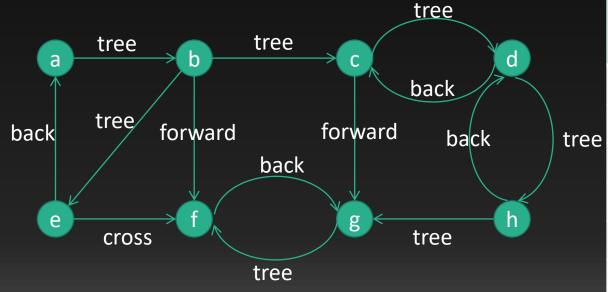


Vertex	Post- order
V	4
С	1
d	3
е	2

Exercise

Compute post-order array

```
Search(vertex v) explored[v] \leftarrow 1 For (v, w) \in E If explored[w] = 0 then parent[w] \leftarrow v search(w) post-visit(v)
```



Vertex	Post- order
а	8
b	7
С	5
d	4
е	6
f	1
g	2
h	3