
CS 4800: Algorithms & 
Data

Lecture 12

February 21, 2017



Problem statement

• n activities

• Start times : s1, s2, …, sn

• Finish times: 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛 (sorted)

• Find largest subset of activities that are compatible

𝑠1
𝑠2

𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6



Dynamic Programming

• Best(i): Maximum # compatible activities finishing 
by fi

• Optimal substructure: consider activities 
comprising Best(i) and its prefixes.

• Claim. The prefix is optimal.

𝑠1
𝑠2

𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6



Recursive relation

• Either pick activity i or not

• 𝐵𝑒𝑠𝑡(𝑖) = max ቊ
𝐵𝑒𝑠𝑡(𝑖 − 1)

1 + 𝐵𝑒𝑠𝑡 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑗 = max 𝑘 𝑠. 𝑡 𝑓𝑘 ≤ 𝑠𝑖

Not pick i

Pick i

𝑠1
𝑠2

𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6



Dynamic Programming

• 𝐵𝑒𝑠𝑡(0) ← 0

• 𝑓0 ← −∞

• For i from 1 to n
• Use binary search to find max j s.t. 𝑓𝑗 ≤ 𝑠𝑖
• Best(i) = max(Best(i-1), 1+Best(j)) 



Various greedy rules

• Pick shortest activity

• Pick activity with fewest conflicts

• Pick activity first to start

• Pick activity first to finish



Exchange argument
Claim: First activity to finish is part of some optimal solution.

Proof. 
Consider an optimal solution X that does not include activity 1.

Let i be the first activity to finish in X.

Because act. 1 finishes before i, act. 1 does not conflict with 
any activity in 𝑋 ∖ {𝑖}

Therefore, X′ = 𝑋 ∖ 𝑖 ∪ 1 is also conflict-free.

X’ has the same size of X and thus, it is also optimal.



Greedy algorithm
𝑠1

𝑠2
𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6

X
X

X

Remove conflicting activities.
Find first activity to finish. Add to solution.

Repeat.



Greedy algorithm

• 𝑐𝑜𝑢𝑛𝑡 ← 1 // number of activities we pick

• 𝑋 𝑐𝑜𝑢𝑛𝑡 ← 1 // X[.]: IDs of activities we pick

• For i from 2 to n

• If 𝑆 𝑖 ≥ 𝐹 𝑋 𝑐𝑜𝑢𝑛𝑡

• 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

• 𝑋[𝑐𝑜𝑢𝑛𝑡] ← 𝑖

• Return 𝑋[1… 𝑐𝑜𝑢𝑛𝑡]



Greedy is optimal

Induction hypothesis: Greedy is optimal for any instance of 
size n.
Base case: Greedy is optimal for n=1
Inductive case: Assume Greedy is optimal for 𝑛 < 𝑘. Will 
prove for n=k.
By Claim, activity 1 belongs to some optimal solution. Thus, 
the best solution that includes 1 is also optimal. 

Greedy picks 1 and then perform greedy on the set of 
activities not conflicting with 1 (a sub-instance of size < k).

By induction, greedy picks an optimal solution for the sub-
instance i.e. it finds the best solution containing 1.

Therefore, greedy also finds an optimal solution for n=k.


