CS 4800: Algorithms &
Data

Lecture 12
February 21, 2017



Problem statement

* n activities

* Starttimes :s;, S,, ..., S,

* Finish times: f; < f, < --- < f,, (sorted)

* Find largest subset of activities that are compatible

S1 *f1
S2 > 12

"3

S3




Dynamic Programming

e Best(i): Maximum # compatible activities finishing
by f.

e Optimal substructure: consider activities
comprising Best(i) and its prefixes.

S1 —fl
Szﬁfz
S3 >

— /3

Sy =f4
St —fS

Se fe

e Claim. The irefix is oitimal.




Recursive relation

Not pick i

 Either pick activity i or not /
Best(i — 1)
1+ Best(j) where j = maxks.t fj, < s;

\ Pick |

* Best(i) = max{




Dynamic Programming

* Best(0) < 0
* fo e —@

* Forifrom1lton
* Use binary search to find maxjs.t. f; <'s;
e Best(i) = max(Best(i-1), 1+Best(j))



Various greedy rules

* Pick shortest activity

—

* Pick activity with fewest conflicts

* Pick activity first to start




Exchange argument

Claim: First activity to finish is part of some optimal solution.

Proof.
Consider an optimal solution X that does not include activity 1.

Let i be the first activity to finish in X.

Because act. 1 finishes before i, act. 1 does not conflict with
any activity in X \ {i}

Therefore, X' = X \ {i} U {1} is also conflict-free.

X’ has the same size of X and thus, it is also optimal.



Greedy algorithm

S1 *f1
S2—— [,
S3 —* “f3
Sy A :f4.
S5 > fs
Se R > fo

Find first activity to finish. Add to solution.
Remove conflicting activities.

Repeat.




Greedy algorithm

e count « 1 // number of activities we pick
 X[count] « 1 //X[.]: IDs of activities we pick
 Forifrom2ton
o If S[i] = F[X[count]]
* count « count + 1
* X[count] « i
* Return X[1 ... count]



Greedy is optimal

Induction hypothesis: Greedy is optimal for any instance of
Size n.

Base case: Greedy is optimal for n=1

Inductive case: Assume Greedy is optimal forn < k. Will
prove for n=k.

By Claim, activity 1 belongs to some optimal solution. Thus,
the best solution that includes 1 is also optimal.

Greedy picks 1 and then perform greedy on the set of
activities not conflicting with 1 (a sub-instance of size < k).

By induction, greedy picks an optimal solution for the sub-
instance i.e. it finds the best solution containing 1.

Therefore, greedy also finds an optimal solution for n=k.



