
CS 4800: Algorithms & 
Data

Lecture 11

February 17, 2017



Comparing genomes

• Given 2 strings/genes
• X = x1x2…xm

• Y = y1y2…yn

• Find alignment of X and Y with min cost
• Each position in X or Y that is not matched cost 1
• For each pair of letters p, q, matching p and q incurs 

mismatch cost of ap,q

S T E P -

- T O - S

Cost 1 Cost ae,o Cost 1Cost 1



Subproblems

• Best(i, j): minimum alignment cost for 2 strings xi, 
…, xm and yj, …, yn



Guess to align x[i:] and y[j:]

• How to align first characters?

• 3 possibilities:
• Match xi and yj

• xi not matched

• yj not matched

xi xi+1 … xm-1 xm

yj yj+1 … yn-1 yn



Recursive relation

• 𝐵𝑒𝑠𝑡(𝑖, 𝑗) = min൞

𝑎𝑥𝑖,𝑦𝑗 + 𝐵𝑒𝑠𝑡 𝑖 + 1, 𝑗 + 1

1 + 𝐵𝑒𝑠𝑡(𝑖 + 1, 𝑗)
1 + 𝐵𝑒𝑠𝑡(𝑖, 𝑗 + 1)

• Evaluation order: from large i to small i, from large j 
to small j 



Whole algorithm

• Initialize 

• 𝐵𝑒𝑠𝑡(𝑚 + 1, 𝑛 + 1) = 0 // aligning 2 empty strings

• 𝐵𝑒𝑠𝑡 𝑚 + 1, 𝑗 = 𝑛 − 𝑗 + 1 for j from 1 to n

• 𝐵𝑒𝑠𝑡 𝑖, 𝑛 + 1 = 𝑚 − 𝑖 + 1 for i from 1 to m

• For i from m down to 1

• For j from n down to 1

• 𝐵𝑒𝑠𝑡(𝑖, 𝑗) = min൞

𝑎𝑥𝑖,𝑦𝑗 + 𝐵𝑒𝑠𝑡 𝑖 + 1, 𝑗 + 1

1 + 𝐵𝑒𝑠𝑡(𝑖 + 1, 𝑗)

1 + 𝐵𝑒𝑠𝑡(𝑖, 𝑗 + 1)

• Return 𝐵𝑒𝑠𝑡(1,1)



Greedy algorithms



Files on tape



Tape storage

• n files of lengths L1, L2, ..., Ln

• To access a file on tape, need
to scan pass all previous files

• Want an ordering to store the 
files to minimize then time to access a random file

File 1 File 3 File 2

Start of 
tape



Precise objective

• Say the file are stored according to permutation 𝜋

• Time to access the i-th file is σ𝑗=1
𝑖 𝐿𝜋(𝑗)

• Expected accessing time of a random file is

cos𝑡 𝜋 =
1

𝑛
෍

𝑖=1

𝑛

෍

𝑗=1

𝑖

𝐿𝜋(𝑗)

𝐹𝜋(1) 𝐹𝜋 2 𝐹𝜋(𝑛)



Example
File 1 

10
File 2

5
File 3

15

• Time to access file 1: 10
• Time to access file 2: 15
• Time to access file 3: 30

• Expected accessing time: 
1

3
10 + 15 + 30 = 18.33



Better ordering
File 1 

10
File 2

5
File 3

15

• Swap files 1 and 2
• Time to access file 2: 5
• Time to access file 1: 15
• Time to access file 3: 30

• Expected accessing time: 
1

3
5 + 15 + 30 = 16.67



Greedy strategy

• Order the files in non-decreasing sizes



Exchange argument
Claim. cos𝑡 𝜋 is minimized when 𝐿𝑎 ≤ 𝐿𝑏 for all pairs of 
consecutive files a and b in the ordering.

Proof.

Suppose 𝐿𝑎 > 𝐿𝑏 for some consecutive files a followed by b.

If swap a and b,
• Cost of accessing a increase by Lb

• Cost of accessing b decrease by La

A B

AB
Overall, average accessing cost change by
(Lb-La)/n

Lb < La so the average accessing cost decreases.

Thus, can improve accessing time whenever there is a consecutive
pair with decreasing sizes



Non-uniform frequencies

• File i is accessed Fi times

• Want to minimize total access time

cos𝑡 𝜋 =෍

𝑖=1

𝑛

𝐹𝜋(𝑖)෍

𝑗=1

𝑖

𝐿𝜋(𝑗)



Example
File 1 
size: 5
freq: 2

File 2
size: 2
freq: 1 

File 3
size: 8
freq: 5

• Time to access file 1: 5
• Time to access file 2: 7
• Time to access file 3: 15
• Total accessing time: 2 ∙ 5 + 1 ∙ 7 + 5 ∙ 15 = 92



Better ordering
File 1 
size: 5
freq: 2

File 2
size: 2
freq: 1 

File 3
size: 8
freq: 5

• Time to access file 3: 8
• Time to access file 2: 10
• Time to access file 3: 15
• Total accessing time: 5 ∙ 8 + 1 ∙ 10 + 2 ∙ 15 = 80



Greedy algorithm

• Sort the files by the ratio Length/Freq.



Exchange argument
Claim. cos𝑡 𝜋 is minimized when 𝐿𝑎/𝐹𝑎 ≤ 𝐿𝑏/𝐹𝑏 for all 
consecutive pair of files a followed by b.

Proof.
Suppose 

𝐿𝑎

𝐹𝑏
>

𝐿𝑏

𝐹𝑏
for some consecutive files a followed by b.

If swap a and b,
• Cost of accessing a increase by Lb

• Cost of accessing b decrease by La

A B

AB
Overall, average accessing cost change by

𝐿𝑏𝐹𝑎 − 𝐿𝑎𝐹𝑏
𝐿𝑎

𝐹𝑎
>

𝐿𝑏

𝐹𝑏
so the average accessing cost decreases.

Thus, can improve accessing time whenever there is an out of 
order pair.



Scheduling



Movie Start End

Blair Witch 10:30 12:00

Bridget Jones’s Baby 10:45 12:45

Deepwater Horizon 10:15 12:10

Masterminds 12:30 2:00

Miss Peregrine’s 1:15 3:20



Problem statement

• n activities

• Start times : s1, s2, …, sn

• Finish times: f1, f2, …, fn

• Find largest subset of activities that are compatible

𝑓𝑖 ≤ 𝑠𝑗 𝑓𝑗 ≤ 𝑠𝑖

OR



Problem statement

• n activities

• Start times : s1, s2, …, sn

• Finish times: 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛 (sorted)

• Find largest subset of activities that are compatible

𝑠1
𝑠2

𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6



Dynamic Programming

• Best(i): Maximum # compatible activities finishing 
by fi

• Optimal substructure: consider activities 
comprising Best(i) (e.g. best(5) is {1,2,5})

• Claim. The prefix (e.g. {1,2}) is optimal choice if 
restricted to activities finishing before the start of 
last activity (s5).

𝑠1
𝑠2

𝑠3
𝑠4

𝑠5
𝑠6

𝑓1
𝑓2
𝑓3

𝑓4
𝑓5

𝑓6


