CS 4800: Algorithms & Data

Lecture 11 February 17, 2017

Comparing genomes

- Given 2 strings/genes
 - $X = x_1 x_2 ... x_m$
 - $\bullet \quad Y = y_1 y_2 ... y_{n_1}$

- Find alignment of X and Y with min cost
 - Each position in X or Y that is not matched cost 1
 - For each pair of letters p, q, matching p and q incurs mismatch cost of a_{p,q}

S	T	E	Р	1
-	Т	0	-	S
Cost 1		Cost a	Cost 1	Cost 1

Subproblems

• Best(i, j): minimum alignment cost for 2 strings x_i , ..., x_m and y_i , ..., y_n

Guess to align x[i:] and y[j:]

x _i	X_{i+1}	•••	X _{m-1}	x _m
y_j	y_{j+1}	•••	y_{n-1}	y _n

- How to align first characters?
- 3 possibilities:
 - Match x_i and y_j
 - x_i not matched
 - y_j not matched

Recursive relation

•
$$Best(i,j) = min$$

$$\begin{cases} a_{x_i,y_j} + Best(i+1,j+1) \\ 1 + Best(i+1,j) \\ 1 + Best(i,j+1) \end{cases}$$

 Evaluation order: from large i to small i, from large j to small j

Whole algorithm

- Initialize
 - Best(m+1, n+1) = 0 // aligning 2 empty strings
 - Best(m + 1, j) = n j + 1 for j from 1 to n
 - Best(i, n + 1) = m i + 1 for i from 1 to m
- For i from m down to 1
 - For j from n down to 1

•
$$Best(i,j) = min$$

$$\begin{cases} a_{x_i,y_j} + Best(i+1,j+1) \\ 1 + Best(i+1,j) \\ 1 + Best(i,j+1) \end{cases}$$

• Return *Best*(1,1)

Greedy algorithms

Files on tape

Tape storage

- n files of lengths L₁, L₂, ..., L_n
- To access a file on tape, need to scan pass all previous files

File 1 File 3 File 2

Start of

Want an ordering to store the tape
 files to minimize then time to access a random file

Precise objective

ullet Say the file are stored according to permutation π

- Time to access the i-th file is $\sum_{j=1}^{i} L_{\pi(j)}$
- Expected accessing time of a random file is

$$\cos t(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{t} L_{\pi(j)}$$

Example

File 1	File 2	File 3
10	5	15

- Time to access file 1: 10
- Time to access file 2: 15
- Time to access file 3: 30
- Expected accessing time: $\frac{1}{3}(10 + 15 + 30) = 18.33$

Better ordering

 File 2
 File 1
 File 3

 5
 10
 15

- Swap files 1 and 2
- Time to access file 2: 5
- Time to access file 1: 15
- Time to access file 3: 30
- Expected accessing time: $\frac{1}{3}(5 + 15 + 30) = 16.67$

Greedy strategy

Order the files in non-decreasing sizes

Exchange argument

Claim. $cost(\pi)$ is minimized when $L_a \leq L_b$ for all pairs of consecutive files a and b in the ordering.

Proof.

Suppose $L_a > L_b$ for some consecutive files a followed by b.

If swap a and b,

- Cost of accessing a increase by L_b
- Cost of accessing b decrease by L_a

Overall, average accessing cost change by $(L_b-L_a)/n$

 $L_b < L_a$ so the average accessing cost decreases.

Thus, can improve accessing time whenever there is a consecutive pair with decreasing sizes

Non-uniform frequencies

- File i is accessed F_i times
- Want to minimize total access time

$$cost(\pi) = \sum_{i=1}^{n} \left(F_{\pi(i)} \sum_{j=1}^{i} L_{\pi(j)} \right)$$

Example

```
File 1 File 2 File 3
size: 5 size: 2 size: 8
freq: 2 freq: 1 freq: 5
```

- Time to access file 1: 5
- Time to access file 2: 7
- Time to access file 3: 15
- Total accessing time: $2 \cdot 5 + 1 \cdot 7 + 5 \cdot 15 = 92$

Better ordering

File 3 File 2 File 1 size: 8 size: 2 size: 5 freq: 1 freq: 2

- Time to access file 3: 8
- Time to access file 2: 10
- Time to access file 3: 15
- Total accessing time: $5 \cdot 8 + 1 \cdot 10 + 2 \cdot 15 = 80$

Greedy algorithm

Sort the files by the ratio Length/Freq.

Exchange argument

Claim. $cost(\pi)$ is minimized when $L_a/F_a \leq L_b/F_b$ for all consecutive pair of files a followed by b.

Proof.

Suppose $\frac{L_a}{F_b} > \frac{L_b}{F_b}$ for some consecutive files a followed by b.

If swap a and b,

- Cost of accessing a increase by L_b
- Cost of accessing b decrease by L_a

Overall, average accessing cost change by

$$L_b F_a - L_a F_b$$

 $\frac{L_a}{F_a} > \frac{L_b}{F_b}$ so the average accessing cost decreases.

Thus, can improve accessing time whenever there is an out of order pair.

Scheduling

Movie	Start	End
Blair Witch	10:30	12:00
Bridget Jones's Baby	10:45	12:45
Deepwater Horizon	10:15	12:10
Masterminds	12:30	2:00
Miss Peregrine's	1:15	3:20

Problem statement

- n activities
- Start times : s₁, s₂, ..., s_n
- Finish times: f₁, f₂, ..., f_n
- Find largest subset of activities that are compatible

Problem statement

- n activities
- Start times : s₁, s₂, ..., s_n
- Finish times: $f_1 \le f_2 \le \cdots \le f_n$ (sorted)
- Find largest subset of activities that are compatible

Dynamic Programming

- Best(i): Maximum # compatible activities finishing by f_i
- Optimal substructure: consider activities comprising Best(i) (e.g. best(5) is {1,2,5})

 Claim. The prefix (e.g. {1,2}) is optimal choice if restricted to activities finishing before the start of last activity (s₅).