
CS 4800: Algorithms &
Data

Lecture 10

February 10, 2017

Packing words into lines

• Sequence of words w1, …, wn

• wi is the width of i-th word

• Want to pack words into lines in the most
aesthetically pleasing way

Objective

• Partition words into lines so that
• Total width of each line is at most page width W

#𝑤𝑜𝑟𝑑𝑠 𝑜𝑛 𝑙𝑖𝑛𝑒 𝑖 − 1 +

𝑗 𝑜𝑛 𝑙𝑖𝑛𝑒 𝑖

𝑤𝑗 ≤ 𝑊

• Slack on line i
𝑊 − #𝑤𝑜𝑟𝑑𝑠 𝑜𝑛 𝑙𝑖𝑛𝑒 𝑖 + 1 − σ𝑗 𝑜𝑛 𝑙𝑖𝑛𝑒 𝑖𝑤𝑗

• Minimize sum of slacks cubed

Spaces

Identify subproblems

• Best(n): minimum badness for typesetting first n
words

Recursive relation

• Want to compute Best(j)

• Suppose the last line consists of
𝑤𝑖,𝑤𝑖+1, … , 𝑤𝑗

• The previous lines should form optimal solution for
words 𝑤1,𝑤2, … , 𝑤𝑖−1
• This is exactly 𝐵𝑒𝑠𝑡 𝑖 − 1

• Can compute P(i,j): penalty if 𝑤𝑖,𝑤𝑖+1, … , 𝑤𝑗 are used to
form a single line

• We don’t know the best choice for i, so try all of them

• 𝐵𝑒𝑠𝑡(𝑗) = min
0<𝑖≤𝑗

𝐵𝑒𝑠𝑡 𝑖 − 1 + 𝑃 𝑖, 𝑗

Compute penalties

• L 𝑖, 𝑗 : slack of line consisting of words i, i+1, …, j

• 𝑃 𝑖, 𝑖 = ቊ (𝐿 𝑖, 𝑗 3 𝑖𝑓 𝐿 𝑖, 𝑗 ≥ 0
∞ 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

• For 𝑖 ← 1 to n

• L 𝑖, 𝑖 ← 𝑊 −𝑤𝑖

• For j ← 𝑖 + 1 to n

• L 𝑖, 𝑗 ← 𝐿 𝑖, 𝑗 − 1 − 1 − 𝑤𝑗

Python code
def justify(words, W):

w = [len(x) for x in words]

n = len(words)

compute slack l[i][j] for line wi…wj

l = [[0]*n for i in range (n)]

for i in range(n):

l[i][i] = W - w[i]

for j in range(i+1, n):

l[i][j] = l[i][j-1] - 1 - w[j]

p = [[]] * n

for i in range(n):

p[i] = [x*x*x for x in l[i]]

compute best

best = [0] * (n+1)

choice = [0] * (n+1)

for i in range(1, n+1):

j = i

best[i] = 1000000000

while (j > 0) and (l[j-1][i-1] >= 0):

if best[i] > best[j-1] + p[j-1][i-1]:

best[i] = best[j-1] + p[j-1][i-1]

choice[i] = j-1

j -= 1

backtrack to find the ends of all lines

i = n

ends = [n]

while i > 0:

i = choice[i]

ends.append(i)

for i in range(len(ends)-1, 0, -1):

print(" ".join(words[ends[i]:ends[i-1]]))

Gerrymander

P3

P2

P4

P1

P5

Gerrymander

• Given A1, A2, …, An : # supporters for party A in
precinct 1, 2, …,n (n even)

• Each precinct has M voters

• Want 2 districts D1, D2

• |D1|=|D2| : same # precincts per district

• A(D1) > Mn/4

• A(D2) > Mn/4

Subproblems

• S(i, k, x, y) = whether among precincts {i, i+1, …, n},
there is a split with
• k precincts in D1

• x votes for A in D1

• y votes for A in D2

Choice for first precinct

• S(i, k, x, y) ?

• Precinct i is in either D1 or D2

• S(i, k, x, y) = S(i+1, k-1, x-Ai, y) OR S(i+1, k, x, y-
Ai)

Algorithm

• Initialize array S[1..n+1, 0..n, 0..nM, 0..nM] to false

• Initialize S[n+1, 0, 0, 0] = true // no precinct

• For i from n downto 1

• For k from 0 to n-i+1

• For x from 0 to (n-i+1)M

• For y from 0 to (n-i+1)M

• S[i,k,x,y] = S[i+1, k-1, x-Ai, y] OR S[i+1, k, x, y-Ai]

• Search for true entry among S[1, n/2, >Mn/4, >Mn/4]

Further optimization

• S[i, k, x, y] is true only if 𝑥 + 𝑦 = σ𝑗=1
𝑖 𝐴𝑗

• S’[i, k, x] is whether among precincts {i, i+1, …, n}
there is a split with
• K precincts in D1

• x votes in D1

• σ𝑗=1
𝑖 𝐴𝑗 − 𝑥 votes in D2

Algorithm

• Initialize S’[n+1, 0, 0] = true

• For i from n downto 1

• For k from 0 to n-i+1
• For x from 0 to (n-i+1)M

• S’[i,k,x] = S’[i+1, k-1, x-Ai] OR S’[i+1, k, x]

• Search for true entry among S[1, n/2, x] with
𝑀𝑛/4 < 𝑥 < σ𝑗=1

𝑛 𝐴𝑗 −𝑀𝑛/4

Sequence alignment

- A C T G C T - G T A

T A - T G G T A G T A

Comparing genomes

• Given 2 strings/genes
• X = x1x2…xm

• Y = y1y2…yn

• Find alignment of X and Y with min cost
• Each position in X or Y that is not matched cost 1
• For each pair of letters p, q, matching p and q incurs

mismatch cost of ap,q

S T E P -

- T O - S

Cost 1 Cost ae,o Cost 1Cost 1

