CS 4800: Algorithms &
Data

Lecture 10
February 10, 2017

Packing words into lines

* Sequence of words wy, ..., w
* w; is the width of i-th word

* Want to pack words into lines in the most
aesthetically pleasing way

n

Objective

* Partition words into lines so that
* Total width of each line is at most page width W

@ords on line l) z w; < W

]onUnel

Spaces
e Slack on line i

W — (#words onlinei) + 1 — X op tine i Wi
* Minimize sum of slacks cubed

ldentify subproblems

e Best(n): minimum badness for typesetting first n
words

Recursive relation

e Want to compute Best(j)

e Suppose the last line consists of
Wi,Wi+1' e W]
* The previous lines should form optimal solution for
words wy W, ..., W;_1
* This is exactly Best(i — 1)
* Can compute P(i,j): penalty if w; w;, 4, ..., w; are used to
form a single line

 We don’t know the best choice for i, so try all of them
* Best(j) = min (Best(i — 1)+ P(i,j))

0<i<j

Compute penalties

* L(i, j): slack of line consisting of words i, i+1, ...,]
0 other wise

*Fori < 1ton
’L(i,i)(—W—Wi
*Forj<i+1ton
‘L(i,j)<—L(i,j—1)—1—Wj

Python code

def justify(words, W): foriinrange(1, n+1):
w = [len(x) for x in words] j=i
n = len(words) best[i] = 1000000000

while (j > 0) and (I[j-1][i-1] >= 0):

compute slack I[i][j] for line w....w. if best[i] > best[j-1] + p[j-1][i-1]:

J

| = [[0]*n foriin range (n)] best[i] = best[j-1] + p[j-1][i-1]
foriin range(n): choiceli] =j-1

I[i1[i] = W - wli] j=1

for jin range(i+1, n):

I[i16G] = I[il[j-1] - 1 - wij] # backtrack to find the ends of all lines

p=I[]*n i=n
foriin range(n): ends = [n]

p[i] = [x*x*x for x in I[i]] while i > 0:

i = choice[i]

compute best ends.append(i)

best = [0] * (n+1) for i in range(len(ends)-1, 0, -1):

Gerrymander

omerville

Cambridge

JIEINE Massachusetts US District 8

HAMPSHIRE \jooisen

Goffstown Mancliosts
Mattapan'h P Manchester
nnington

Brattiebor Milford

Springfieid) Wilbraham
+ tafford
‘Amos 0
Norfolk B . Nowall 4 CONN TICUT
: b Stpe-Rark
ot Providence,
Hartford) _East
Marshfield Hartford
e Plymouth New Britain Plainfield,

nir Cranston,

Pembiok il Waterbury romuwell

Middietc
Darnibur

BEridgeport

ord
Kingston

North]

Altleboro

tieboro
Fall

Plymoutt

US Congressional districts since 2013
Source: httpi/inationalatias.gov, 1 Million Scale project.

Gerrymander

* Given A, A, ..., A, : # supporters for party A in
precinct 1, 2, ...,n (n even)

* Each precinct has M voters

* Want 2 districts D,, D,
* |D,|=|D,]| : same # precincts per district
* A(D;) >Mn/4
* A(D,) >Mn/4

Subproblems

* S(i, k, x, y) = whether among precincts {i, i+1, ..., n},
there is a split with
* k precincts in D,
 x votes for Ain D,
* y votes for Ain D,

Choice for first precinct

* S(i, k, %, y) ?
* Precinctiis in either D, or D,

* S(i, k, x, y) = S(i+1, k-1, x-A,, y) OR S(i+1, k, x, y-
Al)

Algorithm

Initialize array S[1..n+1, 0..n, 0..nM, 0..nM] to false

Initialize S[n+1, O, O, 0] = true // no precinct

For i from n downto 1
e For k from O to n-i+1
e For x from O to (n-i+1)M
* Fory from 0 to (n-i+1)M
* S[i,k,x,y] = S[i+1, k-1, x-A,, y] OR S[i+1, k, x, y-A]

Search for true entry among S[1, n/2, >Mn/4, >Mn/4]

Further optimization

*S[i, k, x,ylistrueonlyifx +y = §-=1A-

e S’[i, k, x] is whether among precincts {i, i+1, ..., n}
there is a split with
* K precinctsin D,
* x votes in D,
§-=1A- — x votes in D,

Algorithm

* |nitialize S’[n+1, O, 0] = true

* Forifromn downto 1
* For k from O to n-i+1
* For x from 0 to (n-i+1)M
* S'[i,k,x] = S’[i+1, k-1, x-A;] OR S’[i+1, k, x]
 Search for true entry among S[1, n/2, x] with
Mn/4 <x <Yj_,A; —Mn/4

Sequence alignment

- A C T G C T - G T A

T A - T G G T A G T A

Comparing genomes

* Given 2 strings/genes
* X=X Xy X,
* Y=v,¥5..Y,

* Find alignment of X and Y with min cost
* Each position in X or Y that is not matched cost 1
* For each pair of letters p, g, matching p and g incurs
mismatch cost of a

S T E

0] - S

Cost 1 Cost a, , Cost 1 Cost 1

