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Abstract

We present a framework for interactively disproving non-theorems. Our method can be used to add
automated disproving and counterexample generation capabilities to existing interactive theorem provers.
This capability increases the utility and effectiveness of theorem provers because it provides automated
support for what users spend most of their time doing: debugging flawed models, invariants, interfaces
and conjectures. We present various disproving techniques and discuss an implementation and evaluation
of the framework using ACL2s, the ACL2 Sedan.

1 Introduction

Formal, computer-aided reasoning is a fundamental and promising method for helping designers build com-
plex and dependable systems. Interactive theorem provers! provide rich formalisms and powerful inference
methods to assist users in this activity. However, the purpose of almost all existing methods is to aid in the
construction of formal proofs, i.e., given a true conjecture, these methods are designed to help the user find
a proof. But what of the numerous initial false starts, faults in modeling, invalid conjectures, abstraction
mistakes, etc. that overwhelmingly account for where users actually spend their time? We propose that
methods for finding counterexamples and disproving non-theorems, warrant proportionally more support.
In fact, mathematical reasoning often proceeds as a succession of these duals, proving and disproving, both
informing each other in a synergistic interplay. What then of the dual of Interactive Theorem Proving? This
line of reasoning leads us to an Interactive Non-Theorem Disprover! The capability to interact with the user
to explicitly equip the tool in discovering, in addition to proofs, counterexamples, is either non-existent or
severely lacking in the current state-of-art interactive theorem provers. In this report, we investigate and
provide a framework to address this deficiency.

To arrive at a plausible method, we need to obtain a good working idea of the nature and form of
the mathematical process of discovery, the activity we intend to assist. Exploration, experimentation and
observation are preludes to discovery, be it the discovery of a pattern, a conjecture, an algorithm and its
invariants, a simplifying abstraction, a proof strategy, etc. Concrete calculation on and testing of one’s devel-
oping intuition using representative examples and special cases are very important methods of exploration.
The experiments and the observations of results gleaned provide a clearer picture of the object under study
and its properties, dispel or confirm user intuition and identify mistakes and gaps in the formalization. One
might daresay it is by experimenting with simple examples and special cases, that their general properties are
intuited; and boldly add that it is the failure to construct a counterexample to a perceived conjecture that
convinces the user of its truth and, often, points to a line of proof. The importance of concrete construction
and calculation cannot be underestimated, and our method mirrors (builds on) this observation.?

The basic ingredient of our method is this: for every symbolic/analytic characterization of the structure
and form of the objects under consideration, we also arrange for its constructive/synthetic analogue, i.e., in

1 Also known as “Proof Assistants,” e.g., ACL2, Coq, HOL4, HOL-Light, Isabelle, NuPrl, PVS etc.
2Though this restricts it to executable (fragments of) logics/languages, it is widely applicable to the field of computer-aided
reasoning.



addition to a predicate that recognizes objects, the user provides a generative characterization that produces
objects of the desired form, and proves that it is sound (i.e., generated objects satisfy their predicate).

In the case of monadic predicates, the user input usually takes the form of enumerator functions whose
domain is N, e.g., (nth-prime n) denotes the nth number satisfying predicate primep. This situation reduces
the sample space of an individual variable, down from the entire universe of discourse, to its type/sort domain.
In fact the success of Quickcheck-like tools for property-based testing hinges on the use of such enumerators
for type-like monadic constraints.

Unfortunately, the hypotheses (pre-conditions) in typical conjectures (properties) are more complex than
a sequence of type restrictions. The search space is still huge, and randomly sampling the domain (restricted
by type or monadic constraints) of each variable is still akin to searching for needles in bundles of large
haystacks, rather than one huge haystack (universe). Can we search (for counterexamples) more efficiently?
In the context of an interactive theorem prover (ITP), indeed there is ample scope. The ITP itself is equipped
with an array of symbolic reasoning methods. In addition I'TPs can be extended by using libraries that
provide access to powerful theory reasoning, or by user-provided invariants and theorems, which allow the
theorem prover to become adept at reasoning about the domain under consideration. All of this is brought
to the fore, to magnify the help given by the user (who provides basic enumerative characterization), and
combined to realize a more efficient counterexample search. We present a counterexample generation utility,
Cgen, that synergistically combines property-based testing with the powerful proof-based search of the ITP
itself [6, 9].

The success of interactive tools, crucially depends on ease of use, conferring value to user’s time, effort
and intelligence. We have paid special attention to the interface of user input characterizing the enumera-
tive aspect of monadic predicates; if it is possible to mechanically generate the enumerator functions from
the predicate definitions, we do so. In fact, we have designed a simple and intuitive language to describe
data (objects), that automatically generates both its predicate and enumerator definitions, along with the
necessary metadata required by Cgen [7]. The data definition framework (Defdata), implementing this lan-
guage, also provides useful primitives for writing and associating custom enumerators for arbitrary monadic
predicates. Moreover, the defdata facility generates many theorems automating type-based reasoning; in
particular, it records subtype and disjoint type relations that Cgen exploits.

The ITP’s inference methods, proof-search heuristics and the model-specific theorems (lemmas) provided
by users (directing the ITP to the final proof) can vastly simplify the proof of conjectures. In concert with
property-based testing at the subgoals (leaves) of the proof search, this goes a long way in aiding the search
for counterexamples. Nevertheless, there are cases in which it falls short.

The simplified hypotheses (of the subgoals) are often more complex than a sequence of independent
monadic constraints enumerable by Cgen; a variable might be constrained by multiple predicates; it might
be related to other variables via binary (and higher-arity) predicates. How then do we arrange for an enu-
merative characterization of these complex constraints? How do we simultaneously solve multiple arbitrary
constraints? This is clearly undecidable and we can have no such general solver. But this does not deter
us; after all we are already in the business of “interactively proving” theorems about recursive definitions,
an undecidable endeavor. Taking this as our definite goal, continuing further on the path we have already
taken, we will give the user an even more central and explicit role in the activity of “interactively disproving”
non-theorems.

What form will the user input take to (enumeratively) characterize arbitrary constraints? In case of
monadic type constraints, we employed enumerator functions. These do not suffice in the presence of
arbitrary-arity predicates; it is not clear what form the enumerator will take. The existence of multiple
predicates constraining a single variable also causes problems: how do we combine the enumerators of the
multiple predicates to obtain an enumerator that simultaneously satisfies them? The form of enumerator
functions is too unwieldy to point to elegant answers to these questions.

Towards this objective, we have found useful the notion of a fizer which we motivate with an example in
Section 6. A fixer function associated with a predicate usually takes the same arguments as the predicate,



and instead of returning a boolean true or false, fizes one or more arguments and returns them, such that
the updated arguments satisfy the predicate. The user both provides such a function for a given predicate
and further characterizes a fixer as preserving certain other relations/predicates, e.g., remove-duplicates
acts as a fixer for the no-duplicatesp predicate and it preserves the predicate orderedp, the property
that a list is ordered. We sketch an algorithm that takes this information into account and orchestrates the
fixers to simultaneously solve multiple predicates/constraints. Thus, the notion of a fixer wields an elegant
solution to the problem of compositionally combining solutions of multiple arbitrary predicates. This has the
potential to vastly improve the efficacy of property-based testing of invariants and conjectures with complex
pre-conditions.

We have implemented our method in ACL2s, the ACL2 Sedan [8], which uses ACL2 [19] as the core
reasoning engine. It is of principal importance that the user interface enabling “non-theorem disproving”
be as intuitive and unobtrusive as possible. The user access to Cgen, the framework/tool implementing our
method, is indeed so; in ACL2s, we have arranged the counterexample generation support to be automatic
and invisible. We have successfully used ACL2s, with Cgen playing a crucial pedagogical role, in a classroom
setting for many years now; this has served as an important evaluation for Cgen, resulting in continuous
improvements in usability and engineering.

We also compare our implementation in ACL2s with Alloy [1], a popular specification analysis tool. We
modeled various Alloy examples in ACL2s and analyzed them with Cgen.

It is worth pointing out that interactive theorem provers differ from theorem provers that provide deci-
sion procedures for (decidable) fragments of logic. A notable class of such theorem provers is the class of
Satisfiability Modulo Theories (SMT) solvers. Notice that in the case of such decision procedures, there is a
simple way to go from proving to disproving because for decidable fragments of logic, a decision procedure
for satisfiability (or falsifiability) yields a decision procedure for validity and conversely. This is not the case
with interactive theorem provers because they are concerned with undecidable fragments of logic and the
methods used to construct a proof cannot directly be used to falsify conjectures.

Proposal Summary For my dissertation, I propose to investigate interactive non-theorem disproving. I
argue that this research is important—users spend a significant amount of time debugging flawed models,
abstractions, invariants and conjectures. The potential to improve the user experience of I'TPs, to more
completely assist all aspects of mathematical reasoning using disproving, is vast. Towards this objective,
I claim that a simple and intuitive method based on concrete construction and executability, with user-
specified enumerative characterizations and employing property-based testing is promising. Implementation
and experiments in ACL2 Sedan and extensive use of the method in the classroom to teach formal reasoning
provide support to my claims.

Proposal Structure The rest of this proposal is organized as follows. In Section 2 we describe completed
work on counterexample generation, implemented as the Cgen tool. The primary interface to “program”
Cgen is provided by Defdata, a language and framework for specifying data definitions; Defdata is described
in Section 3. We evaluate Cgen in section 4 and present related work in section 5. In section 6, we highlight
the current limitations of Cgen and motivate the notion of fixers to solve/enumerate richer constraints.
Future proposed tasks and a tentative schedule are given in Section 7.

2 Counterexample Generation in ACL2 Sedan

In this section we introduce Cgen, the tool that implements counterexample generation support, i.e., non-
theorem disproving, in ACL2. Cgen synergistically combines property-based testing (a la Quickcheck) and
the full power of the ACL2 theorem prover engine. With the help of examples, we will first describe how
Cgen is used, in particular how the user “programs” Cgen and finally we describe how Cgen works, in both
its default and incremental search modes.



2.1 Cgen — User Interface

To illustrate the use of Cgen?, let us consider the triangle problem, a classic example used in software testing
literature. The user wishes to formalize triangles and reason about them. The first step is to define what a
triangle is. The mathematical definition of a triangle is as follows; any triple of positive integers can serve as
the side lengths of an integer triangle as long as it satisfies the triangle inequality. A reasonable model is to
view it as a list of three positive integers (recognized by type predicate posp), representing its three sides,
with each side less than the sum of the other two sides. The user defines the structural aspect (i.e., triple) of
a triangle using the defdata facility and the triangle inequality using a regular predicate function. Defdata
is described in more detail in the next section, it suffices for now to note that it automatically generates the
predicate and enumerator definitions, e.g., triplep and nth-triple in this case.

(defdata triple (list pos pos pos))

(defun trianglep (v)
(and (triplep v)
(< (third v) (+ (first v) (second v)))
(< (first v) (+ (second v) (third v)))
(< (second v) (+ (first v) (third v)))))

The user has specified a predicate describing how a triangle is to be recognized; this much he has to do,
if he wants the theorem prover to assist him in reasoning about triangles. To equip Cgen to assist him, he
can additionally provide an enumerator, that specifies how triangles are to be constructed.

(defun triangle-enum (n)
(b* (((list p n) (split 2 n))
((when (< p 5)) (list 1 1 1))
((1ist n1 n2) (split 2 n))
(1o 1)
(hi (+ p (- 220
(x1 (nth-integer-between nl lo hi))
(hi (+ p (- x1) (- 1)))
(x2 (nth-integer-between n2 lo hi))
(x3 (+ p (- x1) (- x2))))
(list x1 x2 x3)))

(register-type triangle
:predicate trianglep
:enumerator triangle-enum)

Notice how much more involved it is to describe a function (in a pure state-less language) that explicitly
enumerates triangles. Not only is it involved, a fair amount of creativity occurs in the solution preceded by
some insight into the nature and form of the objects under study. We suppose, after a little bit of thought and
experimentation, the user arrives at the following strategy to lay out (almost) all possible triangles: choose
a perimeter, and then choose a partition of the perimeter to get the three sides of the triangle. How to
choose? Our input is a number n and the purpose of the function to output the nth triangle. All our choices
therefore arise from this input number n. Using the library function split, we bijectively split the number
n into a pair of numbers (p,n). Observe that the only triangle of perimeter less than 5 is the equilateral
triangle of size 1. After taking this into account, we further split n, bijectively, into two more numbers; this

3Cgen is enabled by default in ACL2 Sedan. In a vanilla ACL2 session, the following form enables Cgen: (include-book
"acl2s/cgen/top" :dir :system)



lets us choose a 3-way partition of p, using the library function nth-integer-between. Some care is taken
to make sure that each partition/side is at least of length 1.

We use register-type (available from Defdata) to inform Cgen that triangle-enum is a function that
can be used to enumerate objects satisfying predicate trianglep.

While not a bijection, we would like for triangle-enum to be a surjection, i.e., it should enumerate the
set of all integer triangles. This fact is of course very difficult to prove and we trust the user to use his
model-specific insight to provide such a function.

A less painful alternative is for the user to simply give a decent approximation of the enumerator for
triangles, say by reusing the enumerator for triples (which was automatically generated by Defdata), and to
cede the responsibility for searching for triangles of the right shape to Cgen and the theorem prover.

(register-type triangle
:predicate trianglep
:enumerator nth-triple)

This is how the user programs Cgen’s search for test data objects of the correct shape that satisfy the
type-like monadic predicates in the hypotheses of conjectures under test.

The actual working of Cgen is invisible to the end-user. It is automatically invoked every time the user
attempts to prove a conjecture using thm or defthm, standard interfaces to ACL2. Let us suppose the user
plays around with triangles of various shapes (equilateral, isosceles, scalene) and conjectures that there are
no isosceles triangles whose third side is the product of the other two sides. To highlight the work done by
the theorem prover, let us add the constraint that the largest side is greater than 256; this precludes the
success of bounded exhaustive testing of small triangles.

(defun shape (v)
(if (trianglep v)
(cond ((equal (first v) (second v))
(if (equal (second v) (third v))
"equilateral"
"isosceles"))

((equal (second v) (third v)) "isosceles")
((equal (first v) (third v)) "isosceles")
(t "scalene"))

"error"))

(thm
(implies (and (trianglep x)
(> (third x) 256)
(= (third x) (* (second x) (first x))))
(not (equal "isosceles" (shape x)))))

Here is the output snippet due to Cgen:

We tested 2000 examples across 2 subgoals, of which 897 (897 unique)
satisfied the hypotheses, and found 897 counterexamples and O witnesses.

We falsified the conjecture. Here are counterexamples:
[found in : "Subgoal 3'''"]

—— ((X '(259 1 259)))
—— ((X '(327 1 327)))
—— ((X '(264 1 264)))



In the above example, we used triangle-enum as the enumerator for triangles. The use of a user-
provided enumerator was not essential, as the above thm successfully finds counterexamples even with the
naive nth-triple enumerator for triangles.

This is how Cgen is used, tightly integrated with the existing interfaces of ACL2 to prove conjectures.
The summary output generated by Cgen is in English and self-explanatory. There is also a programmatic
interface to Cgen, for people who want to build tools on top of Cgen. The documentation for Cgen and its
ecosystem and can be found online or within an ACL2 session using the command :doc cgen.

2.2 Cgen — Integrating property-based testing

In this section, we provide an overview of how Cgen works, its design and implementation. Cgen operates in
two search modes. We will first describe the default mode, and then explain the incremental search strategy.

Cgen integrates property-based testing and the proof-based search of the theorem prover. To get a better
appreciation, let us look at what happens when we do not take the help of the theorem prover, i.e., when
we only use property-based testing. Instead of using thm, we will invoke a user interface specific to Cgen,
test?, that in its naive setting, performs stand-alone property-based testing, with no interaction with the
theorem prover.

(acl2s-defaults :set testing-enabled :naive)

(test?
(implies (and (trianglep x)
(> (third x) 256)
(= (third x) (* (second x) (first x))))
(not (equal "isosceles" (shape x)))))

**Summary of Cgen/testing#*
We tested 1000 examples across 1 subgoals, of which O satisfied
the hypotheses, and found O counterexamples and O witnesses.

Test? succeeded. No counterexamples were found.

As you can see, on its own, property-based testing is unable to find any counterexamples to the same
conjecture. In its naive setting, Cgen fails miserably, because even though it picks up the right type of = and
only instantiates integer triangles, it is very hard to satisfy the extra constraints on x. The probability that
a randomly sampled triangle turns out to be isosceles, with its longest side greater than 256 and equal to
the product of the other two, is indeed very low, even with the favorable assumption that the sample space
of triangle side lengths is uniformly distributed between 1 and 500.

In its default search mode, Cgen uses the full power of the ACL2 theorem prover to simplify conjectures
for better testing. The main idea is to let ACL2 use all of the proof techniques and the database of lemmas
(rules) at its disposal to simplify conjectures into subgoals, and then to test those subgoals. For the above
example, the prover opens up the definitions of shape and trianglep and uses case analysis, reducing
the above top “Goal” to three subgoals. After several simplification steps and a few rounds of destructor
elimination, Subgoal 3''"' easily yields a counterexample on application of property-based testing.

We tested 3000 examples across 3 subgoals, of which 725
satisfied the hypotheses, and found 725 counterexamples.



We falsified the conjecture. Here are counterexamples:
[found in : "Subgoal 3'''"]
(IMPLIES (AND (INTEGERP X1)
(< 0 X1)
(<1 (x2X1))
(< 256 X1))
(EQUAL X1 1))

-— ((X '(354 1 354)))
-- ((X '(320 1 320)))
-- ((X '(263 1 263)))

Notice that the theorem prover simplified away two variables representing two sides of the triangle, thus
drastically simplifying the constraints; the probability of finding a counterexample went up from very low
to 1 (for the above subgoal, Cgen infers that x is an integer greater than 256). Apart from case-analysis
and destructor elimination, the primary simplification is due to the presence of libraries of lemmas (notably
arithmetic-5 [24]). In this respect interactive theorem proving has a huge advantage over other tools routinely
combined with testing, especially considering the fact that most interactive theorem provers have good library
support.

This gives a flavor of the high-level working of Cgen. We now give an overview of its design and imple-
mentation.

Cgen can be use with any I'TP that satisfies a set of weak assumptions. One of these assumptions is that
the ITP consists of a recursive loop, where each step corresponds to the application of a proof technique that
simplifies the current goal P into simpler subgoals. Property-based testing can be applied before each such
prover step using the procedure cgen-search. In our implementation, instead of testing each subgoal, we
only apply cgen-search to certain subgoals, called “checkpoints” in ACL2, that are important milestones
in the ACL2’s proof search. The actual integration is implemented in ACL2 using override-hints [20], with
cgen-search registered as a callback procedure. Relevant metadata, intermediate results and statistics
are accumulated in context. A user-defined stopping condition specifies when the loop (implemented as
procedure prover-loop/cgen) is to be aborted. The result is one of three conditions: valid, falsified, dont-
know.

def prover-loop/cgen (P context)
context = update ITP type info for vars of P
context = (cgen-search hyps(P) concl(P) context)
if stopping-condition(context)
abort/return result(context), context
Subgoals, context = (prover-step P)
for each s in Subgoals
(prover-loop/cgen s context)
return result(context), context

Simple Search

The cgen-search procedure, in the simple search mode (the default mode of operation), is comprised of
three main tasks; first compute an enumerable/parameterized sample space for each variable of the property
under test, then instantiate the variables with randomly sampled® values to obtain an assignment and finally

4Random sampling is the default, with a pseudo-geometric distribution used for infinite spaces and a uniform distribution
for finite; the alternative option is bounded-exhaustive sampling.



execute/evaluate the conjecture/property under the concrete assignment. The hypotheses and conclusion
are tested separately to record both counterexamples and witnesses; this also helps filter out instances that
are vacuously true, i.e., when the hypotheses evaluate to false.

The first task of cgen-search is the most crucial: infer, to the best of its capability, all the enumerable
constraints and arrange their enumerative descriptions. By enumerable constraints we mean those con-
straints that can be solved completely, i.e., whose solutions are expressible using enumerative descriptions.
At present, this capability is limited to monadic type-like constraints, integer and rational ranges, variable
equality and variable membership constraints. This capability is programmable; the primary user interface
to program Cgen is provided by the defdata facility that is described in the next section. In section 6, we
show how the notion of a fixer enables a user to extend the capability to richer constraints. An enumer-
ative description takes one of three possible forms: internal Cgen encoding, defdata expression and ACL2
expression.

def cgen-search/simple (hyps, concl, context)
type-alist = compute-strongest-type-info(hyps, concl, context)
enum-desc-alist = arrange-enum-desc(hyps, concl, type-alist, context)
symbolic-o = parameterized-assignment (enum-desc-alist, context)
N = num-trials(context)
repeat N times
concrete-o = instantiate enumerating params in symbolic-o
evaluate hyps and concl under concrete-o
record/classify result in context
return context

The actual task of computing enumerable descriptions is performed by arrange-enum-desc, taking into
account, the form of the constraints in the hypotheses, the strongest type information available from the
ITP proof context and the correspondence between constraints and its enumerable description previously
recorded in Cgen. The latter information is given by the user, who programs Cgen to enumerate/solve certain
constraints (usually via Defdata). How the resulting enumerable descriptions are arranged is explained later
in the section (Select procedure).

Once each variable of the property is associated with an enumerative description, parameterized-assignment
performs a straightforward syntax-directed translation to build the corresponding ACL2 value expression de-
pendent only on random parameters that are used to enumerate the range of actual solution space. The
resulting symbolic assignment, i.e., a symbolic value binding, is then repeatedly instantiated by (randomly)
varying the enumerating parameters and the resulting concrete assignment is used to evaluate the hypotheses
and conclusion separately. The result of each such test is recorded in the context.

Incremental Search

Consider the following constraints on integers, z1 > 22, x1 < z2 % 2. These inequalities impose a binary
relationship between x1 and x2. But this relation is not undirected in the sense that there is an asymmetry
and direction introduced by the functional term in the second inequality. This functional term by means of
its computational cost, introduces a dependency between x1 and x2. It is computationally easier, to solve
for the value of x1 given a feasible partial solution for x2, than the other way round. This motivates an
ordering among variables determined by some notion of computation cost. In the above example, 2 ought
to be selected and assigned first. Suppose x2 is assigned the value 3, the resulting constraints are monadic
range constraints on x1: z1 > 3,21 < 9. Ranges, i.e., inequality constraints that involve a single variable
and constants (hi, lo) are obviously enumerable and natively supported by Cgen. Thus what was before
outside Cgen’s scope, is, after assignment and simplification (concrete evaluation), natively understood.



This motivates the incremental search mode of Cgen; instead of assigning symbolic values to all variables
en block, and then repeatedly instantiating and testing it, one proceeds incrementally. We select the most
independent, least constrained, variable first, assign it a concrete value (as before), propagate this partial
assignment to simplify the constraints using the full power of the ITP and iterate till a complete assignment
is found, at which point, the property under test is evaluated. If propagation results in inconsistency, i.e.,
one of the hypotheses is simplified to nil, then we backtrack. The algorithm in more detail is presented
in [9]; below we describe the select procedure.

The select procedure operates on P, the property under test. If a variable is constrained to be equal
to a constant, it is returned. Then select uses congruence closure to handle variable-variable equalities
(e.g., x1 = x9) in P. Functional dependency is modelled using a directed graph. The graph is topologically
sorted and the least dependent variable is returned; a similar analysis is used to determine how enumerable
descriptions are arranged in the right order by arrange-enum-desc.

def select (P)
if x = ¢ in hyps(P) // c is a constant
return x
do congruence closure on P
G = build-dependency-graph(P)
X = topological-sort(G)
return last(X) // most independent

The dependency graph, whose nodes are the free variables of P, is built as follows: for each constraint ¢
of P, we apply the following rules, based on its form; if more than one rule applies, the earliest rule is used.
In the rules, we assume that x and y are (distinct) free variables of P and term is inductively defined to
be either a variable, a constant expression, or a function application with arguments that are terms. Terms
that are function applications are denoted by fterm.

1. If  of the form x < fterm such that < is a binary relation, y € freeVars(fterm) and x ¢ freeVars(fterm),
we add an edge from node z to node y, recording that = “depends” on y. Intuition: It easier to satisfy
x < 25, simply evaluate 2° and solve z < 32. Satisfying 32 < 2V is trickier.

2. If ¢ is of the form = € y, then add an edge from z to y.

3. If p is of the form x <y where < € {<, <, >, >} we don’t add an edge. Intuition: Constraint x > 3 is
as easy to satisfy as 42 > y, so we avoid complicating the graph. (This overrides the following rule.)

4. If ¢ is of the form R(termi, terms, ..., termy), such that x € freeVars(term;), y € freeVars(term;),
i # j,n > 2 and R is an arbitrary n-ary relation, then we simply add a bidirectional edge, recording
their mutual dependence, but giving no preference (locally) to either variable.

We have described the Cgen utility, its user interface and its design. We will now highlight Defdata, an
important constituent of the Cgen framework.

3 Defdata — Enumerating data definitions in ACL2

Data definitions are an essential part of designing programs and modeling systems; they form the first and
the most basic means of describing the structure of the objects under study. Only after the structural aspects
of data are defined, does the user refine it with additional constraints. Thus it is imperative to have a handle
on data definitions, both with respect to the theorem proving and non-theorem disproving.

In ACL2, data definitions are described using a predicate function, which provides an analytic character-
ization of the data, i.e., the input element is analyzed if it matches the desired structure, deconstructed and



the constituent elements are (recursively) analyzed. This much the user has to do to convey the structure of
the data to the theorem prover. Since our primary concern is to do with non-theorem disproving using con-
crete data and calculation, we need to do more; in particular we need to describe the same data bottom-up,
in a constructive manner, and obtain an enumerative characterization.

The defdata framework provides a comprehensive solution: by introducing a high-level, intuitive language
to describe data, we are able to obtain both the views, the predicative and the enumerative. The defdata
macro provides the primary user interface to “program” Cgen with the capability of enumerating solutions to
type-like monadic constraints; moreover, the defdata language expressions serve as enumerative descriptions
and are used as such in the implementation of Cgen.

Here is a quick demonstration of the defdata language. Suppose the user is modeling a filesystem, the
key concepts can be defined in the defdata language as follows.

(defdata inode nat)

(defdata file (cons inode string))
(defdata files (listof file))

(defdata
(dir (oneof nil (cons (cons string dir-entry) dir)))
(dir-entry (oneof file dir)))

When submitted, the defdata event introduces a new typename, predicate and enumerator definitions for
the type, and a host of other events that support a “typed” language setup. For example, given the last
form, ACL2s will automatically generate type predicate dirp, which recognizes a directory. It supports
Cgen (property-based testing) by generating nth-dir, a type enumerator that maps natural numbers into
directories®. In general, a type enumerator for type T is a surjective function from natural numbers to
T. ACL2s will automatically generate a type enumerator for any new data types defined using the data
definition framework. The type predicate and enumerator are generated using a syntax-directed translation.

The defdata framework provides enumerators for the primitive types and for basic ACL2 types that are
combinations of primitive types (e.g., the natural numbers, integers, rationals, and lists). Each data object
in the ACL2 universe is treated as a singleton “type”, i.e., a set with just one element, the data object itself.
The type which represents all of the ACL2 universe is called all; every type is thus a subset of all. Also fully
supported are user-defined union types, product types, list types, alist and map types, range types, record
types, and enum (member) types. In particular, Defdata framework supports custom types, i.e., arbitrary
monadic predicates (e.g., prime numbers), with the burden of generating the enumerator resting on the user.

Defdata performs an additional crucial service for Cgen: it helps encode precise type information and
type relations in ACL2’s type-reasoning component®. It does so by generating theorems that characterize
the type relations such as inclusion (subtype) and exclusion (disjoint); and it generates events that support
polymorphic type reasoning.

Given a data definition (defdata M s), defdata computes the set of rules that completely characterize the
inclusion/exclusion type relationship between M and typenames in s. Defdata thus automatically updates
the subtype type lattice for every new data type. This is very useful, not only does this enable Cgen to
query the lattice and infer minimal type information, it also enables automated type-like reasoning.

Polymorphic support in Defdata adds significant user convenience. Indirectly, it also helps Cgen infer
more precise type information. Consider the list concatenation function append, if the user specifies a poly-
morphic type signature for it (see below), then Defdata sets up the appropriate theory (using encapsulation

5 Apart from these events, the predicate and enumerator for dir-entry is also generated, and various other type relationship
lemmas.

SThe Tau system is a component of the ACL2 theorem prover, designed to quickly prove “type-like” proof obligations. It is
driven by a database derived from previously admitted lemmas and definitions.
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and instantiated tau-rules) such that, the append of two rational lists is determined to be a rational list,
instead of just a (generic) list. This allows Cgen to infer a stronger type for such functional terms and
consequently results in a more efficient property-based testing.

Here are some example polymorphic signatures using Defdata’s sig macro.

(sig append ((listof :a) (listof :a)) => (listof :a))

(sig nth (nat (listof :a)) => :a
:satisfies (< x1 (len x2)))

(sig put-assoc-equal (:a :b (alistof :a :b)) => (alistof :a :b))

A Defdata tutorial and a more complete description of the framework is available elsewhere [7].

4 Evaluation

First, we present our experience in using ACL2s in the classroom setting which has served as an important
evaluation for Cgen and has led to continuous improvements in it’s usability. In the next subsection, we
evaluate Cgen by comparing it to Alloy. This comparison is described in more detail in the Cgen paper [9].
We modeled various Alloy examples in ACL2s and find counterexamples to all failed properties (falsified by
Alloy) using Cgen.

4.1 Classroom experience

For several years, we have been teaching freshman students at Northeastern University how to reason about
programs. We have used ACL2s and it has been an invaluable teaching aid. Omne place where students
often struggle is in writing specifications. They sometimes make logical and conceptual mistakes, and they
often omit required hypotheses. Therefore, they often try to prove conjectures that are false. In large part,
the motivation for this work was to help students by providing them with counterexamples. In this, we
have succeeded because the Cgen framework tends to find counterexamples easily. The counterexamples
allow students to see what is wrong with their conjectures, in terms they readily understand. Without the
counterexamples, students are left trying to determine whether they need more lemmas or whether their
conjectures are false, a skill that takes time to develop.

4.2 Comparison with Alloy

Alloy [17] is a declarative modeling language based on sets and relations, primarily used for describing high-
level specifications and designs. Alloy Analyzer [18] is a tool that supports automatic analysis of models
written in Alloy. Given a bound on the number of model elements, called scope, the Alloy Analyzer (AA)
translates Alloy models (and its specifications) into Boolean formulas, uses state-of-the-art SAT technology
to generate satisfying instances and translates them back to corresponding set and relation instances of the
objects in the model. Alloy is based on a first-order relational logic with transitive closure, which allows
expressing rich structural properties using succinct expressions.

We analyzed 10 properties from 3 Alloy problems (specifications), all from the Alloy book [17] and can
alternatively be downloaded from the Alloy distribution. Table 1 shows results, comparing the performance
of our method implemented in ACL2s, with the performance of the Alloy Analyzer (AA). The time (in
seconds) is measured on an Intel Core i3, 2.8GHz, 4GB memory machine. The Alloy analysis time is the
total of the time spent on generating CNF and solving it using the SAT4J solver. The time taken by our
method is what the ACL2 macro time$ reports and includes the time taken by the ACL2 theorem prover.
The Scope column for AA either denotes the minimum scope that finds a counterexample, or the maximum
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Alloy Analyzer ACL2s/Cgen
Property Scope Time Result | Time  Result
delUndoesAdd 25 26.41 - 0.07 QED
addIdempotent 25 37.76 - 0.19 QED
addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE
writeRead 34 99.69 - 0.02 QED
writeldempotent 33 44.13 - 0.01 QED
hidePreserveslnv 61 24.91 - 0.26 QED
cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE
pasteAffectsHidden 27 117.63 - 0.42 QED

Table 1: Comparison with Alloy Analyzer (AA)

scope for which AA can check the property before exceeding the 2 minute time limit, or the 1 GB memory
limit. Note that the user does not specify scope when using ACL2s; the size of the test data generated by
Cgen is bounded by the pseudo-random sampling distribution which is fixed. The Result column shows either
“CE”, “QED” or “-”, that stand for “Counterexample found”, “Proof found”, “Neither Counterexample nor
Proof found”, respectively.

The first 4 properties are from the model of an email client’s address book supporting aliases and groups,
the writeRead and writeldempotent properties are from the abstract memory problem, the next 4 properties
are from an Alloy model describing the design of a media file management software.

We took the above examples and modeled them in the ACL2 language, mimicking the original formulation
in Alloy as much as possible. In particular, we used set types and map types (i.e., binary relations), which
are part of defdata language. These respectively make use of the ordered sets library and the records
library [27, 21, 12] in the ACL2 standard library distribution. These libraries provide a generic collection of
reasoning rules (used in rewriting) about sets and records. In fact they are powerful enough to prove all the
properties that Alloy exhaustively checked within the scope.

5 Related Work

We classify the related work in disproving conjectures by the techniques used and in the end summarize
previous efforts to support counterexample generation in ACL2. We restrict our attention to work targeting
rich specification languages that do not fall under a decidable fragment of logic.

Property-based random testing

Executable specifications (properties) can be randomly instantiated (values generated for its free variables)
and tested. This is known as property-based random testing and the success of QuickCheck [11] has led
its wide-spread adoption in functional programming languages. The ITP community has also embraced
property-based testing, for example in Isabelle [2, 5], Agda [15], PVS [30] and more recently in Coq [14].

Usually, Quickcheck-like tools provides a library of combinators for users to write testdata generators
by hand, although some support automation for type-like pre-conditions exists [5, 23]. The SciFe [25]
framework in Scala, provides higher-order combinators to mechanize construction of efficient enumerators
for even complex data structures with invariants.

Reduction to SAT/SMT

The other standard technique for generating counterexamples for a conjecture is to use a SAT or SMT solver.
This requires translating from a rich, expressive logic to a restricted decidable logic.
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The commonly used MACE-style [28] translation bounds the cardinality of the atomic types and encodes
predicates and functions using propositional variables. Refute [36] and Nitpick [4] are SAT-based disprovers
available in Isabelle, that use sophisticated encodings of higher-order logic.

The Leon verification system [3], uses a pure functional subset of Scala as its specification language. Its
core solver builds on the SMT-solver Z3 [13] and adds support for recursive functions using an iterative
loop, that incrementally unfolds the function and alternates between an under-approximation (non-recursive
control branches) and an over-approximation (using uninterpreted functions). More recent work on handling
recursive functions presents a translation that instead of iteratively unfolding and calling a SMT-solver, uses
quantifier instantiation and invokes the solver only once [31].

Symbolic-based approaches

Other approaches to disproving include symbolic techniques based on narrowing or logic programming.
Narrowing-based testing consists of symbolic evaluation of the conjecture with partially instantiated terms
and then to incrementally refine (i.e., instantiate) these when needed. Prominent tools implementing this
include LazySmallCheck and Isabelle’s Quickcheck [26, 32, 5]. The latter also provides “smart generators” to
handle conditional conjectures, i.e., properties with preconditions, where the test data generator associated
with a given precondition is synthesized from the mode-analysis performed on the set of Horn clauses obtained
from it.

ACL2

Generating counterexamples to give better feedback in ACL2 and its predecessors has motivated many
efforts, starting with Won Kim’s thesis [22], and more recently: DoubleCheck [16], Pythia [33] and SAT
Checking [34]. Kim’s system used heuristic-based constraint-solving techniques in conjunction with limited
simplification (rewriting and definition expansion) to construct examples (assignments to free variables in the
constrained formula). Pythia uses the SAT-based tool Alloy Analyzer [18] to generate small counterexamples
for simple ACL2 formulas. While Pythia works for simple formulas, it is impractical for formulas which
contain references to recursive definitions; in such cases, the user needs to write Alloy models. Sumners [34]
uses SAT checking to generate counterexamples and faces the similar problem of being amenable only to very
simple formulas. DoubleCheck is a QuickCheck-like library implemented in DrACuLa [35], a DrScheme-based
GUI for ACL2. Since it is not written in ACL2, and does not have an integrated data-definition framework,
it places the burden of specifying data generators and random-data-distributions on users.

6 Fixers — Solving arbitrary primitive recursive predicates in ACL2

Consider the following scenario, which is outside the scope of the current Cgen implementation, i.e., even
after full simplification by the ITP, the resulting constraints are not in a form enumerable by Cgen.

We want to mechanically prove the correctness of Dijkstra’s shortest path algorithm (DSP). The specifi-
cation of the algorithm is this: Given a graph G, and two nodes, a and b, the path (if it exists) computed by
DSP is the shortest path from a to b. The DSP algorithm is a greedy algorithm that traverses the graph from
the source node a maintaining a table of shortest paths from the source to each visited node. After visiting
all reachable nodes, it simply looks up in the table the path stored for b. The proof as given in textbooks
involves an invariant on the path table that it contains the shortest paths (from a) in the subgraph obtained
by restricting the input graph to the visited nodes. Although the crux of the proof is to come up with the
main invariant, it is a fairly non-trivial exercise in interactive theorem proving [29, 10]; it requires the user
to discover and prove numerous supporting lemmas (e.g., 57 domain-specific lemmas in the ACL2 proof).
Consider the following lemma in the ACL2 proof:
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(implies (and (graphp g)
(path-tablep a pt g)
(path u pt)
(member v (neighbors u g)))
(pathp-from-to (append (path u pt) (list v))
av g

It says that, for a graph g, a path-table pt contains paths from node a to vertices in g, if there is a path
(from a) to node u in pt, and node v is a neighbor of u, then extending that path by v is a path from a to v
in g. This is a theorem and ACL2 automatically proves it by induction if it has access to a handful of useful
lemmas (rewrite rules).

If the user has a fairly good idea of the model and its behavior, designs the right concepts (functions),
formulates the right invariants, provides the right lemmas and hints to limit the search space, then it is
reasonable to expect the prover to find a complete formal proof successfully. We are primarily concerned
with how to increase the usability of the prover when these conditions do not hold, which in our experience
is almost always. Until the proof is completed, the user might not be entirely familiar with the problem,
might be considering and designing supporting concepts, might make mistakes in the formalization, devise
invariants that are not valid, or might just make silly human errors.

Suppose, for example, the user makes the following mistake in the above lemma:

(implies (and (graphp g)
(path-tablep a pt g)
(path u pt)
(memp v (neighbors u g)))
(pathp-from-to (append (path u pt) (list u v))
aveg)

Perhaps the user forgot how he has encoded paths in the path table. Mistakenly thinking the path from
a to u stored in the path-table is not inclusive (i.e., omits u), he adds u before its neighbor v. A sloppy
mistake, but a perfectly reasonable one to manifest in the initial process of formalization and design. After
about 50 seconds and 80 subgoals, the prover returns with a long failed proof output, printing out 5 useful
subgoals (checkpoints) to look at.

Cgen, employing type-based enumerators, also fails to generate a counterexample. Let us analyze the
reasons for the failure. Note that at the top-level goal, the only enumerable constraints are the membership
constraint and any defdata type constraints that Cgen can glean from the ITP context. Even if Cgen
perfectly infers the monadic type constraints on all the variables in the conjecture, that pt is a path-table (a
map from vertices to list of vertices), a,u, v are vertices, g is a adjacency-list, mapping vertices to weighted
edges, it is plain to see why property-based testing from these constraints alone fails; the variables in the
conjecture are highly interdependent on each other and the monadic constraints do not take this dependency
into account. For constraint (path-tablep a pt g), the probability that a randomly generated path-table
pt will only contain paths originating from a in a randomly generated graph g is close to 0. For (path u
pt), the probability that a generated vertex u will have a path from a in g and that the path is stored in pt
is also close to 0. Moreover, that the generated assignments will simultaneously satisfy all the constraints is
still less probable.

It is left to the user, to stare at the conjecture, stare at all the predicate definitions, stare at the checkpoints
in the failed proof and break the stalemate. There is a huge difference between knowing and not knowing
whether a conjecture is false. In the former, one can put on their meanest counterexample generator hat
and conjure up a series of examples that satisfy the hypotheses, but not the conclusion and then manually
test them for validation. How can we can get the ITP to help us put on this hat?
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The fact of the matter is that g, pt, a, u and v are intricately tied together, and the only way to
generate their assignments is to generate them together, i.e., to solve the above constraints simultaneously
at their origin. But these are not linear equations that we might find ready techniques of simultaneous
equation solving. Each predicate in the constraints above is a concept that is recursively defined and quite
non-linear we might say. To solve them is to have a solver for arbitrary (primitive) recursive constraints.
This is clearly undecidable and we can have no such general solver. So we ask, how might we “interactively
solve” simultaneous, arbitrary, primitive recursive constraints?

To this objective we have found useful the notion of a fizer, that is more flexible and general than that of
an enumerator. It is cumbersome to generalize enumerators to binary and higher-arity predicate constraints,
moreover, it is not clear how one can combine enumerators to solve simultaneous constraints. Fixers provide
an elegant solution to the problem of simultaneously solving multiple, higher-arity constraints. A fixer is
a function associated with a predicate, that instead of saying “yes” or “no”, provably computes the “yes”
instances, usually by minimally fixing one (or more) errant argument(s). Furthermore, applying a fixer to
certain other predicate constraints, leaves them invariant, i.e., a fixer preserves the truth of a collection of
predicates. The idea of the solution is that the user informs Cgen of these relations, and Cgen orchestrates
the appropriate enumerators and fixers to simultaneously solve/enumerate the constraints under test.

Let us demonstrate how a user would use fixers to interactively disprove the above flawed conjecture. Let
us first see how we can individually solve the aforementioned problematic constraints. To solve (path-tablep
a pt g), we will look at its predicate definition and then design a fixer function for it.

(defun path-table-p (a pt g)
(if (endp pt)
t
(b*x (((cons v path) (first pt)))
(and (or (null path)
(pathp-from-to path a v g))
(path-table-p a (rest pt) g)))))

path-table-p holds when for every entry (v,path) in the table pt, if path is not empty, then it is a path
in g from a to v. Below we define a fixer function to piecewise reconstruct/fix pt to satisfy the predicate.
Notice that it re-uses the recursive structure of the predicate. We assume the user has specified a fixer for
pathp-from-to predicate.

(defun path-table-fix (a pt g)
(if (endp pt)
O
(b* (((cons v path) (first pt)))
(cons (cons v (if (< (len path) 2)
'O
(pathp-from-to-fix path a v g)))
(path-table-fix a (rest pt) g)))))

Now, the user, under some preconditions, has to prove that path-table-fix is indeed a fixer for
path-table-p. The appropriate rule/lemma would be:

(alistp pt) & (graphp g) & (member a (strip-cars g))
=>
(path-tablep a (path-table-fix a pt g) g)

This rule informs Cgen how to satisfy the path-table constraint using path-table-fix. The preconditions
specify that, pt is an association list (i.e., a table), g be a graph, and a is in the vertices of g. Note that all
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the preconditions are enumerable; Cgen can satisfy (solve) all of these and then apply the fixer function to
satisfy path-table-p.

Let us now deal with the other constraint (path u pt); it says that there is an entry in pt starting
with vertex u. Like above, we can design a fixer for this constraint, and then specify the corresponding
rule. Instead, we will proceed on more general lines. We will use the fact that membership constraints have
first-class status in Cgen and directly use the following transformation rule. It says that to satisfy (path u
pt), we simply fix u to be a member of the “keys” of pt (In ACL2, strip-cars is used to find the keys of
a key-value association list).

(path u pt) --> (member u (strip-cars pt))

Each such rule provided by the user, transforms a predicative characterization of a variable’s search space
into a computational, enumerative characterization of the search space. Thus we now have a handle, via
Cgen, to solve the problematic constraints individually. The only remaining question is how solve all the
constraints together, simultaneously.

We need to find an algorithm that orchestrates the application of fixers in such a way that each fixer
not only satisfies the constraint it is applied to, but, also preserves all the previously satisfied constraints.
Thus in addition to “fix” rules, which associate a fixer with the predicate it satisfies, the user also needs to
specify “preservation” rules, which will inform Cgen, that applying a fixer to a true (satisfied) constraint,
does not overturn its truth value. If it is possible, we would like to guarantee that at the end of the process of
choosing the appropriate fixers and arranging the appropriate order of their application, all the constraints
are simultaneously satisfied. If it is not possible, we would like an arrangement that would maximize the
number of satisfied constraints.

In the above example, it is easy to find an arrangement of enumerators and fixers that simultaneously
satisfies all constraints. We apply the enumerators first to satisfy the monadic type constraints inferred by
Cgen. Then we apply path-table-fix to fix a,pt,g to satisfy path-table constraint; it is easy to see that
path-table-fix preserves all the previously satisfied type constraints. We then solve for u (in (path u pt)
by using the equivalent membership constraint (see the transformation rule above), without falsifying the
path-table-p constraint (since u does not even appear in (path-tablep a pt g)). Finally Cgen solves the
membership constraint for v and notice that this too trivially preserves the previous constraints.

Applying manually the above rules to the aforementioned buggy conjecture, ACL2s/Cgen is able to
simulate the rest of the above solution (albeit partially, using its select procedure) to find counterexamples
within 2 seconds of search.

7 Proposed Work and Schedule
7.1 Fixers

We propose to incorporate support for fixers within the Cgen framework, extending the capability of Cgen
to enumerate arbitrary higher-arity constraints. We plan to develop a theory of fixers, and, based on it,
design and implement an algorithm to orchestrate fixers to simultaneously satisfy a given set of constraints.
We intend to design a MAX-SAT encoding and employ a SAT-Solver to provide an optimal solution with
respect to maximizing the number of constraints satisfied/fixed. For experimental evaluation, we plan to
pick 2-3 diverse non-trivial models with complex invariants and constraints from the ACL2 regression suite
and use Cgen to simultaneously satisfy the hypotheses of the theorems. Finally, we will write up and submit
a conference paper describing this work.

7.2 Cgen Improvements

The incremental search mode of Cgen, is not as fine-tuned as the default mode; the main stumbling block is
that propagation of the partial assignment by the ITP’s deduction engine often results in constraints whose
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form is not directly amenable to Cgen; we plan to study this and improve the performance of incremental
search. The documentation and user guide for programmatic use of Cgen/Defdata framework needs to be
written. We plan to integrate Cgen with the standard libraries of the ACL2 distribution, so that Cgen is
readily and more widely used by the ACL2 community.

7.3 Tentative Schedule

September 2015  Proposal
September 2015 - November 2015  Fixers (Section 7.1)
December 2015 - March 2016 Cgen improvements (Section 7.2); writing dissertation
April 2016 Defense
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