
CS 2800: Logic and Computation Fall 2010

16 September 2010

Lecture Outline:

• ACL2 Basic Data Types

• Expressions

• Evaluation

1 ACL2 Basic Data Types

ACL2 supports 5 disjoint kinds of data objects:

• numbers: 0, -123, 22/7

• characters:

#\A, #\a, #\$, #\Space

• strings: "This is a string."

• symbols: nil, x, address, len

• conses: (1 2 3 4), (a b c), ((a 1) (b 2))

Here is an informal description of the logical construction of the numbers.
The non-negative integers (i.e., the naturals) are built from 0 by the succes-
sor function.

1



Nat := 0 | (Succ Nat) where Succ can be defined as (+ 1 arg) The negative
integers are built from the naturals by the negation function. The rationals
are built from the integers by division. The complex numbers are built from
pairs of rationals.

Two commonly used symbols are t and nil. These are the Boolean symbols
and are used to denote true and false in ACL2. However, all ACL2 primitive
conditional and propositional operators test against nil. Any object other
than nil may serve as an indicator of truth. When we say some test is true we
mean that the value returned is not nil. The symbol t is just a convenient
choice.

Conses are objects constructed using the ’cons’ operation:
Cons := (cons All All)
where All is any ACL2 data object. Remember that non-empty Lists are
Conses, but not all Conses are Lists,
i.e., Set of All non-empty Lists ∈ Set of all Conses.
True-List := nil | (cons All True-List) Note that nil is a symbol, and has
overloaded meaning, it stands for the boolean false, but also for the empty
true-list and is sometimes written as (). Therefore the empty list is a symbol,
not a cons.

The first four datatypes are also called atoms. Structurally complex objects(non-
atoms) are constructed using the cons operation. So one can broadly say
the ACL2 Universe has only atoms and conses.

2 Expressions

ACL2 programs are composed of expressions, also called terms.

In CS2500, you learned about the “man in the machine”: Understand the
language so well, that you can, step by step, evaluate any expression you
are given.

We now introduce the core of the language, mainly simple expressions:

A simple expression is one of:

• a variable symbol

• a constant symbol

2



• a constant expression, or

• application of function symbol of n arguments to n simple expressions
a1, . . . , an ,written as (f a1 . . . an)

Comments may be written where whitespace is allowed. A comment begins
with a semi-colon and ends with the end of the line. Here is an example
expression.

(if (equal date ’(august 14 1989)) ; Comments are written
"Happy birthday, ACL2!" ; like this.

nil)

This expression contains the variable symbol date, the constant symbol nil,
two constant expressions (a list and a string), and two function applications
(of the function symbols if and equal).

3 Evaluation

What does an expression mean? Its meaning is given by its value. What
is the value of an expression? It is the ACL2 Object it evaluates to. The
value of an expression depends upon the history of the session in which
it occurs. e.g., whether an expression can be evaluated or not depends on
which functions have been defined. We leave the history implicit in our
discussion here.

Given a history (assignment of ACL2 objects to its variable symbols and all
functions defined in the history), an expression can be evaluated. The value
is always an ACL2 object. In this discussion, we let the history be implicit.
But you can think of the history as everything before the TODO LINE in
the ACL2s editor, you remember the grey area, everything in the grey area
is in the history of current session.

Let eval stand for the ACL2 runtime procedure which evaluates expressions:
Value(expression) = (eval expression) Note: eval is a runtime procedure,
used by ACL2 to evaluate expressions, its not available to the users directly.
Consider the session editor window(in ACL2s) the eval window, where you
can ask ACL2 to eval any input expression for you.

3



A variable symbol is a symbol other than a constant symbol (defined be-
low). For example, x, entry, and address-alist are variable symbols. Variable
symbols are given values by the (implicit) assignment.

A constant symbol is t, nil, or a symbol declared with defconst(like *PI-APPROX*
in hwk2). The value of t is the ACL2 object t; the value of nil is the ACL2
object nil. Symbols declared with defconst have names that start and end
with asterisks. The value of such a symbol is some ACL2 object specified by
the defconst declaration. For example, *PI-APPROX* is a constant symbol
in hwk2. Its value is the rational number 22/7.

A constant expression is a number, a character, a string, or a single quote
mark (’) followed by an ACL2 object. In the last case, we call the constant
expression a quoted constant. The value of a number, character, or string
is itself. The value of a quoted constant is the ACL2 object quoted. Thus,
123 and "Error" are constant expressions with themselves as their values.
’Monday is a quoted constant whose value is the symbol Monday. ’(August
14 1989) is a quoted constant whose value is a list of three elements, the first
of which is the symbol august. Note that ’123 and ’"Error" are quoted
constants and have 123 and ”Error”, respectively, as their values. More
generally, when writing numeric, character, and string data in expressions
the quote mark is optional. We generally do not quote numbers, characters,
or strings since they evaluate to themselves anyway. But when symbols
(other than t and nil) are used as data in an expression they must be
quoted because otherwise they might be confused with variables. That is,
the expression x is a variable whose value is specified by the context(history).
The expression ’x is a constant expression whose value is the symbol x.
Value(x) = history(x) whereas
Value(’x) = the symbol x

Cons objects must be quoted because otherwise they might be confused with
function applications. We will return to this point in a moment.

The quoted constant ’α may also be written (quote α). The symbol quote
is not a function symbol but a special marker indicating that its argument
is to be taken literally rather than treated as an expression.

4



Recall the definition of what a simple expression is, there was only one case
which was recursive in its definition, that was the function application, for
which the following fact holds:

The value of an expression(function application) is given recur-
sively in terms of the values of the subexpressions(arguments of
the function application)

The value of a function application, (f a1 . . . an), under a given variable
assignment is described in terms of the values, ci , of the ai under that
assignment. i.e., Let Value(ai) = ci
And lets say f is defined as:
(defun f (v1 . . . vn)

body)

where body is a simple expression. Value(f a1 . . . an) = Value(body) under
the assignment vi = ci.

Some functions are primitive, and they are treated differently, for each prim-
itive function symbol, ACL2 associates a mathematical function that it di-
rectly uses to evaluate a function application. In the above example, equal
is a primitive function symbol of two arguments. if is a primitive func-
tion symbol of three arguments. The function associated with if returns its
second argument or third argument depending on its first argument. In par-
ticular, if the first is nil, the function returns its third argument; otherwise,
it returns its second. The value of the simple expression

(if (equal date ’(august 14 1989)) ; Comments are written
"Happy birthday, ACL2!" ; like this.

nil)

is either the string "Happy birthday, ACL2!" or else the symbol nil, de-
pending on whether the value assigned to the variable symbol date is the
list (august 14 1989) or not.

5



Many novice ACL2 programmers are confused about when to use the single
quote mark. If numbers, characters, and strings evaluate to themselves, why
not treat list constants similarly? The reason is that list constants can look
just like function applications. We now return to the question of why we
must write single quote marks before list constants. Reconsider the simple
expression above, except remove the single quote mark.

(if (equal date (august 14 1989)) ; Comments are written
"Happy birthday, ACL2!" ; like this.
nil)

Note that the value of the subexpression (august 14 1989) in this expres-
sion bears no a priori relationship to the similar expression in the earlier
example. Here, (august 14 1989) is treated as the application of the func-
tion august to the arguments 14 and 1989 and its value is not necessarily
the list object of 3 elements, first being the symbol august, the second and
third being numbers 14 and 1989.

Two wonderful facts about ACL2 should be noted here. The first is that
every expression is an ACL2 object. For example, we can write a program
that operates on the list constant.

’(if (equal date (august 14 1989)) ; Comments are written
"Happy birthday, ACL2!" ; like this.

nil)

The second is that function and variable names, we use in expressions are
symbols, i.e., they satisfy symbolp predicate.

6


