
CS2800 Fall 2010 - Lecture 23

Harsh Raju Chamarthi

10 November 2010

1 Inductive proofs of implication formulas

There was a quiz, which was:
Q1: What is the induction scheme generated by mul1.
Q2: What are the proof obligations we get when we apply the above induc-
tion scheme to (= (mul n m) (* n m)).

In the last class we proved that subset is reflexive(i.e any set is a subset of
itself: (subset A A)). We used a lemma to prove it, but that proof will fall
apart, if we dont prove the lemma. So lets prove the lemma:

[subset-cons-element]

(implies (subset A B)

(subset A (cons x B)))

We dont have any basic lemmas about subset, so we have no choice but
to carry out a proof by induction, which means that to prove the above
lemma, I need to apply an induction scheme, which scheme should I choose,
I will choose (tlp A) or (subset A B), but both have the same induction
schemes(Note that the reason why (subset A B) terminates is the same
reason why (tlp A) terminates).

So if I apply the induction scheme of (tlp A) to the above formula, I have
the following proof obligations: base case:

1See Lecture 20

1



(implies (endp A)

(implies (subset A B)

(subset A (cons x B))))

which can be clearly simplified using the propositional tautology:

p→ q → r ≡ p ∧ q → r

to

(implies (and (endp A)

(subset A B))

(subset A (cons x B))))

If we prove this simplified formula, we know by the Rule of inference of Prop.
Deduction, we can deduce our original formula.

Lets write down the formula we are going to reduce to t and the context:
(subset A (cons x B))

⇐ { def. subset, BCcond }
t

Context
BCcond:(endp A)

A1: (subset A B)

The other proof obligation is the
induction step:

(implies (and (not (endp A))

(implies (subset (cdr A) B)

(subset (cdr A) (cons x B))))

(implies (subset A B)

(subset A (cons x B))))

which can again be simplified using our standard technique of pushing all
the antecedents in the conclusion into the top-level implication:

(implies (and (not (endp A))

(implies (subset (cdr A) B)

(subset (cdr A) (cons x B)))

(subset A B))

(subset A (cons x B)))

2



Which means all we need to prove is (subset A (cons x B)), assuming all
the formulas in the antecedent(these formulas are also called hypotheses).
Note, in the context I have abbreviated subset to s.

(subset A (cons x B))

⇐ {def. subset, IS1 }
(and (in (car A) (cons x B))

(subset (cdr A) (cons x B)))

⇐ {def in, consp-cons, car-cdr-cons }
(and (or (= (car A) x)

(in (car A) B))

(subset (cdr A) (cons x B)))

⇐ {Prop. Deduction, D1 }
(subset (cdr A) (cons x B))

⇐ {D3 }
t

Context

IS1: (not (endp A))

IH:

(implies (s (cdr A) B)

(s (cdr A) (cons x B)))

A1: (subset A B)

by {def. subset, IS1 }
we can deduce:

D1 : (in (car A) B)

D2 : (s (cdr A) B)

from {Prop. Ded, D2, IH }
we can furthur deduce:

D3 : (s (cdr A) (cons xB))

Beware: You can only push the antecedents in the conclusion of the top-
level implication to the top, not the antecedents of the implication in the
antecedent of the top-level implication.

Notes:

1. When starting a proof, ask yourself the question, does this proof even
need induction. Maybe there are some lemmas i can use, if not then
you decide, okay, this property is about recursive functions, so I have
no choice but to try an induction proof.

2. Once you have decided on applying induction, the next question you
must answer is “What Induction Scheme should I use?”, the answer
of which is Choose the most important function in the formula you
want to prove. But that really does not say much. Remember if the
property you are trying to prove is inherently about true-lists, you can
get away using the induction scheme of (tlp X) most of the time. But
this is not always the case, as we will see shortly.

3. Repeat again: “I cannot instantiate any formula in my context”. As-
sumptions can never be instantiated, since they are not true state-
ments, they are true only for the current proof. Only Axioms and

3



theorems(which are true statements for all acl2 objects) can be in-
stantiated.

4. The most powerful assumption in the context, in an induction proof, is
the Induction Hypothesis(IH), if ever in doubt, and you have a choice,
you must choose to proceed the proof in a manner which would take
you as close as possible to a situation where you can use the Induction
Hypothesis.

5. Extending the initial context to get derived context is a a very nice
space-saving technique and intuitive. You dont use this technique all
the time, but its especially used in induction proofs of formulas of the
form (implies A C). See next point.

6. In the previous proof(after applying the first 2 reasons), I need to
know something about (subset (cdr A) (cons x B)), in fact I need
to show its true, but all I know from the context is that (implies

(subset (cdr A) B) (subset (cdr A) (cons x B))) is true, which
means, I cant use it right away. You can think of it, as being locked,
you need to use whats in the conclusion of the IH, but it cant be used
unless you unlock it, i.e show that the antecedent of the IH is true.
The good news is that this can always be done:
From the rest of the (initial) context, i.e IS1 and A1, I can easily
deduce (subset (cdr A) B), which unlocks my induction hypothesis
by the propositional tautology(Modus Ponens):

p ∧ (p→ q)→ q

Thus using the rest of the initial context, you can always deduce the
conclusion of the induction hypothesis implication, which can be di-
rectly used in the proof. This technique is repeated for all induction
proofs of implication formulas(i.e (implies A C)).

2 Proving correctness of accumulator-style func-
tions

Now we will see how to prove that an efficient version of a function written
in accumulator-passing style(tail-recursive) gives the same answers as the
original version.

Here are definitions:

4



;; rev : tlp -> tlp

(defun rev (x)

"Reverse a list"

(if (endp x)

nil

(app (rev (cdr x))

(list (car x)))))

;; rev*-acc : tlp tlp -> tlp

(defun rev*-acc (x acc)

"cons elements of x onto acc, thus reversing x"

(if (endp x)

acc

(rev*-acc (cdr x)

(cons (car x) acc))))

;; rev*: tlp -> tlp

(defun rev* (x)

"Tail-recursive version of reverse"

(rev*-acc x nil))

I want to prove that rev* is correct. What does it mean? Well if we know
rev works correctly, all I need to show is:

(= (rev* x) (rev x))

But wait, rev* is a non-recursive function, normally I would like to use a
lemma to prove this(without using induction), but unfortunately I dont have
any lemmas that would help, but in the process of proving the above you will
notice the process of how to come up with the lemma. As I said rev* just ex-
pands to (rev*-acc x nil). Which means we need to prove (= (rev*-acc

x nil) (rev x)). Since this is a property about recursive functions(which
recur on true-lists), I need to use Induction, as I currently have no lemmas
to help me. At this point you should ask, what Induction scheme should
I use. There are 3 choices, (rev x), (tlp x) or (rev*-acc x acc), but
the first two are exactly the same induction schemes(why? simple, on a
piece of paper write down the induction schemes for both functions and see
for yourself).

Lets choose the induction scheme given by (rev x), then we get the following

5



proof obligations:

Base Case:

(implies (endp x)

(= (rev*-acc x nil) (rev x)))

Induction Step:

(implies (and (not (endp x))

(= (rev*-acc (cdr x) nil) (rev (cdr x))))

(= (rev*-acc x nil) (rev x)))

Base case is simple, lets do the IS:

Context

IS1: (not (endp x))

IH: (= (rev*-acc (cdr x) nil)

(rev (cdr x)))

(= (rev*-acc x nil)

(rev x))

⇐ {def. rev*-acc,rev, IS1 }
(= (rev*-acc (cdr x)

(cons (car x) nil))

(app (rev (cdr x))

(list (car x))))

⇐ { ????? }

I want to use my Induction Hypothesis(IH), but I cannot, and no amount of
opening definitions of rev/rev*-acc will help me get there, since the second
argument always increases. If I cannot use the IH, there is no point in doing
an induction proof anymore. This might be an instance of trying to prove
something using a wrong induction scheme, which is not rare, but as we will
shortly see this is an instance of trying to use induction to prove a theorem
which is not general enough. To apply induction in its full power and glory,
one needs to generalize2. But more on that later, lets see another failed
proof:

Lets induct on (rev*-acc x acc). What induction scheme does it have, lets
write it down:

2This generalization falls right out of this failed proof

6



Induction scheme of (rev*-acc x acc):

Base Case:

(implies (endp x) φ)

Induction Step:

(implies (and (not (endp x))

φ|σ:((x (cdr x)) (acc (cons (car x) acc)))

φ)

If I apply this induction scheme to the formula we are trying to prove, we
obtain the following proof obligations:

Base Case:

(implies (endp x)

(= (rev*-acc x nil) (rev x)))

Induction Step:

(implies (and (not (endp x))

(= (rev*-acc (cdr x) nil) (rev (cdr x))))

(= (rev*-acc x nil) (rev x)))

But wait, this is exactly the same proof obligation as before, so we know we
will get stuck again. Why is induction not working? Induction schemes are
generated from function definitions, the scheme has acc, but rev does not
have any mention of acc, ideally we would like to apply induction on a more
general, a stronger formula. What exactly are we trying to accomplish here,
well, we want to relate the result of computing rev*-acc and rev. Since
rev*-acc has an extra argument, we must take care of it too, for which we
have to find the missing function(f) in the following relation:

(= (rev*-acc x acc)

(f acc (rev x) x))

or think of it as a fill in the blanks:

(= (rev*-acc x acc)

(... acc (rev x) ...))

or if you prefer this order:

(= (rev*-acc x acc)

(... (rev x) acc ...))

7



As Cosimo, correctly guessed, the answer is to combine both the lists. Think
about it. rev*-acc just walks down the list consing its elements onto an
initial accumulator argument. Assuming (len x) = n and (len acc) = m, at
the end of the recursion, when we return the answer, it has n+m elements,
the first n elements being exactly the reversed list and the remaining m
elements in the back are the original accumulator you started with, the
relation is therefore simply:

Lemma rev-app

(= (rev*-acc x acc)

(app (rev x) acc))

In which case our f in the fill in the blanks is the following mathematical
function: (f a1 a2 a3) = (app a2 a1).

By the way, if you look at last footnote, I mention that this generalization
could easily be guessed from our first failed proof. Now that we have a
general lemma(rev-app), we can officially call it a lemma only if we prove it,
lets prove it, but remember the choice of induction scheme is very important
here, since we have acc in the formula, it would be beneficial if we choose
the induction scheme generated by rev*-acc, since it seems to be the most
important function in the formula. If we use that induction scheme we have
as usual the following proof obligations:

Base Case:

(implies (endp x)

(= (rev*-acc x acc)

(app (rev x) acc))

Induction Step:

(implies (and (not (endp x))

(= (rev*-acc (cdr x) (cons (car x) acc))

(app (rev (cdr x)) (cons (car x) acc))))

(= (rev*-acc x acc)

(app (rev x) acc)))

Base case is simple, do it yourself, lets do the Induction step(IS):

8



Context

IS1: (not (endp x))

IH: (= (rev*-acc (cdr x)

(cons (car x) acc))

(app (rev (cdr x))

(cons (car x) acc)))

(= (rev*-acc x acc)

(app (rev x) acc)

⇐ {def. rev*-acc,rev, IS1 }
(= (rev*-acc (cdr x)

(cons (car x) acc))

(app (app (rev (cdr x)) (list (car x)))

acc))

⇐ {IH, def. list }
(= (app (rev (cdr x)) (cons (car x) acc))

(app (app (rev (cdr x)) (cons (car x) nil))

acc))

⇐ {app-associative lemma }
(= (app (rev (cdr x)) (cons (car x) acc))

(app (rev (cdr x)) (app (cons (car x) nil)

acc)))

⇐ {app-cons lemma }
(= (app (rev (cdr x)) (cons (car x) acc))

(app (rev (cdr x)) (cons (car x) (app nil acc))))

⇐ {def. app, if-true }
(= (app (rev (cdr x)) (cons (car x) acc))

(app (rec (cdr x)) (cons (car x) acc)))

⇐ { Equality }
t

If you recall we proved the following two lemmas in disguise in previous
lectures.

(equal (app (cons a b) c)

(cons a (app b c))) app-cons (Lec 16)

9



(equal (app (app x y) z)

(app x (app y z))) app-associative (Lec 17)

(equal (app x nil) x) app-nil (Lec 19)

Note: In particular if you want to prove anything about a function, you
need to prove lemmas about its constituent functions, for e.g since body of
rev contains app, cons, it would help to have lemmas which characterize
the properties of app, cons and combinations.

But wait we havent proved our original conjecture, which was (rev* x) =

(rev x)?. Lets do the proof, but notice we dont have to use any induction,
we will use purely the reasoning we did before we learned any induction:

(= (rev* x)

(rev x))

⇐ {def. rev* }
(= (rev*-acc x nil)

(rev x))

⇐ { Instantiate lemma rev-app }
(= (app (rev x) nil)

(rev x))

⇐ {instantiate lemma app-nil }
(= (rev x)

(rev x))

⇐ {equality }
t

With that we finish our proof of the fact that the efficient implementation
of reverse works correctly(works like our original reverse). All proofs of
correctness of accumulator style(tail-recursive) functions will follow the same
proof pattern as shown above.

10


