CS2800 Lecture Notes Lecture 18 27 Oct 2010

Given definitional axioms:

(equal (tlp x)
(if (endp x)
(equal x nil)
(tlp (cdr x))))

(equal (add-to-end e 1)
(app 1 (cons e nil)))

(equal (integer-listp Xx)
(if (endp x)
(equal x nil)
(and (integerp (car x))
(integer-listp (cdr x)))))

Let us first prove
(tlp (add-to-end e 1))
using the lemma tlp-app

(implies (tlp y)
(tlp (app x v)))

This isn't an equality proof, so we need to make a series of reductions:

(tlp (add-to-end e 1))
<= { Def. add-to-end }
(tlp (app 1 (cons e nil)))

<= { Instantiation: Lemma tlp-app }
(tlp (cons e nil))
<= { Def. tlp, IF-false axiom, endp def., consp-cons axiom }
(tlp (cdr (cons e nil)))
<= { cdr-cons axiom }
(tlp nil)
= { ‘Evaluation }
t

Basically, using a propositional deduction on (tlp (cons e nil)) and
an instantiation of the lemma,

(implies (tlp (cons e nil))
(tlp (app 1 (cons e nil))))

allowed me to conclude (tlp (app 1 (cons e nil))). In fact, the
particular propositional deduction is Modus Ponens.



What if I said to prove (consp 42) using the lemma (integerp nil)?
Believe it or not, I can construct such a proof:

(consp 42)

<= { ‘Propositional deduction }
nil

<= { Ewvaluation }
(integerp nil)

<= { Lemma }
t

What is interesting is that the assumption that (integerp nil) is a lemma
stipulates that it is a theorem. In this case, the lemma given was not

a theorem; in fact, it always evaluates to nil! This allowed us--through

legal deductions on flawed assumptions--to conclude nil is a theorem. Once
we have concluded nil, or "false", we can use a propositional deduction to
conclude anything. (false -> p is a tautology.)

Is this really a proof? Yes it is, but not with regard to any theory ACL2

will allow. If an extension of ACL2's base theory is able to prove
(integerp nil) then that extension is unsound, because it allows us to
conclude two contradictary propositions: (not (integerp nil)) and
(integerp nil).

ACL2 does not allow unsound extensions of its theory, so this will not happen
if the Lemmas you are given are actually theorems in a proper extension of
ACL2's base theory.

(It's not important that you completely understand soundness yet.)

Prove

(implies (and (integer-listp 1)
(integerp e))
(integer-listp (add-to-end e 1)))

using the lemma integer-listp-app:
(implies (and (integer-listp Xx)

(integer-listp y))
(integer-listp (app X v)))



Once again, we are not proving an equality, but this time we have assumptions
we can use, we will put it in the context box:

Context: Assumptionl: (integerp-listp 1)
Assumption2: (integerp e)

(integer-listp (add-to-end e 1))
<= { Defnadd-to-end }
(integer-listp (app 1 (cons e nil)))
<= { Lemma Integer-listp-app }
(and (integer-listp 1)
(integer-listp (cons e nil)))
<= { Prop. deduction, assumption 1 }
(integer-listp (cons e nil))
<= { Defn integer-listp, IF axiom, not endp cons }
(and (integerp (car (cons e nil)))
(integer-listp (cdr (cons e nil))))
<= { carcons and cdr-cons }
(and (integerp e)
(integer-listp nil))
<= { Prop. deduction with Assumption 2 }
(integer-listp nil)
<= { Ewvaluation }
t

A proof displaying Case-analysis:
Given the function definitions:

(defun integer-listp (x)
(if (endp x)
(equal x nil)
(and (integerp (car x))
(integer-listp (cdr x)))))

(defun keep-ints (1)
(if (endp 1)
nil
(if (integerp (car 1))
(cons (car 1)
(keep-ints (cdr 1)))
(keep-ints (cdr 1)))))



Let us prove some cases of
(integer-listp (keep-ints x))
Let us start with

(implies (endp X)
(integer-listp (keep-ints x)))

Context
Al: (endp x)

(integer-listp (keep-ints x))
<= { Def Keep-ints, 41, if-true axiom }
(integer-listp nil)
<= { Ewvaluation }

Let us next prove

(implies (and (consp Xx)
(integer-listp (keep-ints (cdr x))))
(integer-listp (keep-ints x)))

Context
Assumptionl: (consp Xx)
Assumption2: (integer-listp (keep-ints (cdr x)))

(integer-listp (keep-ints x))
<= { Def keep-ints, assumption 1, if-false axiom}
(integer-listp (if (integerp (car x))
(cons (car X)
(keep-ints (cdr x)))
(keep-ints (cdr x))))

Now there does not seem to be much we can do here, because (car x) could
be an integer or it could be something else. How do we prove it holds in
both cases?



One of our rules of inference can help us out here. A kind of propositional
deduction is case analysis, which comes from the tautology

((p ->q) /\ (~p ->q)) ->q

That says that if q is true when we assume p and also true when we assume
~p, then q is always true. That means we can reduce proving any proposition
q to proving p -> q and ~p -> q for any formula p. This is a case of
propositional deduction.

For the problem we are working on, let us first assume (integerp (car x))

and prove the conjecture, and then we will assume (not (integerp (car x)))
and prove the conjecture. That will complete the proof of the original

conjecture. This splits my proof into two cases(subgoals) since there is a

conjunctionin ((p -> q) /\ (~p -> q))!

Casel: (integerp (car x)) is true, so we update our context box for only this sub-proof:

Context(Casel)

Assumptionl: (consp X)

Assumption2: (integer-1listp (keep-ints (cdr x)))
CaseAssumptionl: (integerp (car x))

(integer-listp (if (integerp (car x))
(cons (car Xx)
(keep-ints (cdr x)))
(keep-ints (cdr x))))
<= { CaseAssumptionl, if-true }
(integer-listp (cons (car Xx)
(keep-ints (cdr x))))
<= { Definteger-listp, consp-cons, endp def, if-false }
(and (integerp (car (cons (car X)
(keep-ints (cdr x)))))
(integer-listp (cdr (cons (car Xx)
(keep-ints (cdr x))))))
<= { car-cons, cdr-cons axioms}
(and (integerp (car x))
(integer-listp (keep-ints (cdr x))))
<= { CaseAssumptionl, Assumption2, propositional deduction }
t

That completes proof of first case(subgoal).



Case 2: (not (integerp (car x)))

Context(Case2)

Assumptionl: (consp x)

Assumption2: (integer-listp (keep-ints (cdr x)))
CaseAssumption2: (not (integerp (car x)))

(integer-listp (if (integerp (car X))
(cons (car x)
(keep-ints (cdr x)))
(keep-ints (cdr x))))
<= { CaseAssumption2, if-false }
(integer-listp (keep-ints (cdr x)))
<= { Assumption2 }
t

That completes proof of second case(subgoal).
Having proven both cases, the proof is complete.



