CS 2800: Logic and Computation Fall 2010
(Lecture 14)

14 October 2010

1 Intro to ACL2 Logic

I finished the proof for “There is no largest integer”, you can find that in
the last lecture notes.

After that I said, ACL2 Logic is similar to FOL in many ways, but there
are a few differences.

1. ACL2 Logic does not have any (explicit) quantifiers

2. All (free) variables in ACL2 formulas are (implicitly) universally quan-
tified
e.g. (or (atom x) (consp x))
means that for all values of z, i.e. ranging over all the objects of the
ACL2 Universe, z satisfies the predicate functions atom and consp. In
the logic and theory of ACL2, this is a theorem, because there are no
values of = that make this false(nil).

3. Existential quantification is emulated using witnesses
e.g. we saw how we got rid of the existential quantifiers in the FOL
formula for “there is no largest integer”. We can formalize the final
formula in ACL2:

(implies (integerp x)
(and (integerp (+ x 1))
G H#Fx1 )



4. There are no relation symbols in ACL2 Logic, they are emulated using
predicate functions(i.e. return t or nil as output)

5. The distinction between terms(expressions) and formulas in ACL2 is

blurred due to the concept of generalized booleans(nil and non-nil) and
Note 1 mentioned below.

e.g. The following expressions are not only formulas in ACL2, but also
theorems, since they evaluate to a non-nil object:
5

’(1 2 3)
(+ 3 4)
“hi”

Recall from Lecture 5, an ACL2 expression is one of:

e a variable symbol

e a constant symbol

e a constant expression, or

e application of n-arity function symbol to n expressions a1, ..., a, ,writ-

ten as (f ai...an)

Assuming ezpr1,expr2 are ACL2 expressions, we can precisely define ACL2
formulas:

e (equal exprl ezpr2) is a (atomic) formula

o If form is an ACL2 formula, so is (not form)

o If form1 and form2 are ACL2 formulas, thensois (OO form1 form2),
where [J is one of and, or, implies, iff

Notes:

1. To be pedantic, any ACL2 expression expr used in the context of a
formula, can be thought of as an abbreviation for (not (equal expr
nil)), i.e. we can think of it as (= ezpr non-nil). This blurs the
distinction between ACL2 formulas and expressions.



2. Forcing the user to use witnesses as opposed to existential quantifiers
(immensely) helps ACL2 to prove theorems automatically. AFAIK, no
Interactive Theorem Prover in the world has automation comparable
to ACL2.

3. There is another problem with writing quantifiers: they are not pro-
gramming language constructs; they are not computable. How would
one compute:

(exists x (and (perfect-numberp x)
(oddp x)))

Would you try all possible values of x? Even if you only tried all the
natural numbers, they are infinite! (In this case, I'm looking to solve
an unsolved problem in mathematics: the existence of an odd perfect
number(See wikipedia for more information).

So a nice thing about ACL2 formulas is that they are executable — if
you assign a value to all the variables. For example, we could test our
conjecture on there being no largest integer on the value 1000 like so:

(let ((x 1000))
(implies (integerp x)
(and (integerp (+ x 1))
G +x1) )N

And that evaluates to T, meaning it is true.

4. Since ACL2 is quantifier-free and free variables are implicitly univer-
sally quantified, all ACL2 formulas are propositions. Thus, all ACL2
expressions are propositions. Here are some ACL2 theorems. They are
theorems because there are no assignments to variables under which
they evaluate to nil:

e (<12
o t

(integerp 5)

(implies (natp x) (integerp x))
o5

e "false"



2 Using ACL2 Logic and the theorem prover

We can ask ACL2 to attempt to prove theorems using thm, like:

(thm 5)

(thm "hi")

(thm (or (atom x)
(consp x)))

Now that we are working with ACL2 logically, Programming mode no longer
suffices. (Programming mode will not attempt any proofs.) For the rest of
(CS2800, you should use the ACL2s session mode Intermediate mode. We
won’t be looking at the output of thm in any detail until the end of the
term when we learn to use ACL2’s proving capabilities on more complex
problems. For now, we will treat thm as something that tells us either,
“Yes, ACL2s could prove this automatically, so it is definitely a theorem,”
or “ACL2s was able to find counterexamples, in which case its definitely not
a theorem” or “ACL2s was unable to prove this automatically, and unable
to find counterexamples so it may or may not be a theorem”. Although we
aren’t discussing exactly how ACL2’s thm works, we should discuss how thm
doesn’t or can’t work. For most interesting theorems, thm cannot work by
trying all the possibilities and checking that the formula evaluates to true
(non-NIL) in each case. This is because the possibilities are infinite(and no
practical machine can check infinite possibilities). Consider trying all the
possible ACL2 values on (or (atom x) (consp x)). You would have to
try x = 0,z = 1,z = 2,.... Even the natural numbers are infinite, which
is just the subset of the whole ACL2 Universe! If you ask ACL2 to prove
the above using thm it will succeed(“Yes! its a theorem”) and give a small,
finite proof(whats a proof will be explained in a future class). This is pretty
awesome because a proof gives us a finite way of running an infinite number
of examples. Thats the power of logic and mathematics.

On the other hand, it only takes just one example(a counterexample) to
show an ACL2 proposition is not a theorem. Consider the proposition that
every value is either greater than five or less than five. I could ask ACL2 to
prove that as follows:

(thm (or (> x 5)
(< x 5)))



It fails, but that does not tell us definitively whether it is a theorem or
not(unless it explicitly gives a counterexample). If we can find a coun-
terexample(by ourselves), an assignment of values to the free variables, that
makes the proposition false(NIL), that tells us definitively that the propo-
sition is not a theorem. What if I let = be 57 That is neither greater than 5
nor less than 5, so that should falsify the proposition(make it NIL). Here’s
how we can check that our counterexample does just that:

(check= ... nil)

We can also relate the notion of counterexamples back to FOL . The above
ACL2 proposition essentially says

Vz.(or (> z 5) (< z 5))

which is the same as
——Vz.(or (> z 5) (< z b))

We learned last time from identities involving quantifiers that that is the
same as
—3Jz.—~(or (> x5) (< x 5))

We can eliminate the existential quantifier providing a witness for x, which
will serve as our counterexample:

~(or (> 55) (< 55))

which is the same as
——nil

and in FOL terminology, that is

false

In these 2 cases, it was easy to decide if a conjecture was true (thm gives a
proof) or false(with a good amount of testing, we would have identified the
false conjectures).

Is this always the case?

No, it is not!



Anyone heard of Fermats last theorem?
For all positive integers x, ¥, z, and n, where n > 2,

In 1637, Fermat wrote about the above: “I have a truly marvelous proof of
this proposition which this margin is too narrow to contain.”
This is called Fermats Last Theorem. It took 357 years for a correct proof
to be found (by Andrew Wiles in 1995). Can someone use the above to
construct a conjecture that would be hard to prove in ACL27

(defun f (x y z n)
(if (and (posp x)
(posp y)
(posp z)
(natp n)
(>n 2)
(= (+ (expt x n) (expt y n))
(expt z n)))
1
0))

(thm (= (f x y z n) 0))

So, proving theorems may be hard. But, if they arent theorems, we should
be able to find counterexamples quickly, right?
No!

A conjecture may be false, but it may be very hard to find a counterexample.

Let N22 be the set of natural numbers >= 2. Remember that we can factor
any number in N=2 into a product of primes. This product is uniquely
defined. If the number of primes is even, we say that the number is of “even
type”; otherwise it is of “odd type”. Examples: 2 = 2 is of odd type and
4 =2 %2 is of even type.

Let
E(n)= the number of naturals in N=2 that are of even type and are <= n.
O(n)= the number of naturals in N=2 that are of odd type and are <= n.

Polyas conjecture: O(n) >= E(n) for all n in N=2. This conjecture was
made in 1919. Check Wikipedia. It was checked for many values of n, and



it was widely believed to be true.
However, in 1962 a counterexample was found (by Lehman) for n=906,180,359.
Phew!

This is related to Computer Science and especially to software. Perhaps the
most well-known statement explaining this:

“Program testing can be used to show the presence of bugs, but never to
show their absence” — Edsger W Djisktra (EWD249, 1970)

3 Substitution

A substitution(o) is a mapping(a one-to-one function) from the variable
symbols to terms(expressions). In CS2800 we will represent it as a list of
2-element lists:

Substitution := (listof (list varSymbol expression))

If a substitution ¢ maps variable symbol x to expression e, we say x is a
target variable of ¢ whose image is e.

The application of a substitution ¢ to a ACL2 formula ¢ , denoted by
¢|s uniformly replaces, in ¢, every occurence of the target variable by its
image.

Notel: By uniformly we mean, o replaces every occurence of a variable
symbol with its unique image.

Note2: The substitution process happens simultaneously. e.g.

¢: (app x y), applying the following

o: ((x (cons y w)) (y (+ a b)) (w 42)) gives:

¢|ls: (app (cons y w) (+ a b))

If you think the answer is something else, then you are not applying the
substitution simultaneously i.e. in one go.

Do the Lab assignment, to make sure you completely understand substitu-
tion since it is an important concept and will be used extensively when we
are doing theorem proving.



