CS 2800: Homework 7

Due Date: 6pm Tuesday Nov 30 2010

Problem 1(20 pts)

Suppose you just completed a session with ACL2s where you proved theo-
rems leading to the following rewrite rules.

1. (£ (£ %)) = (gxx

N

(f (g (gxy)2)=x

w

gxy)=(C(Qy

4. (f (h 2)) =z

5. (g xy) = (hx)
6. (g b x)y) = (fx)
7. (£ (gxy))=(gxy)

Suppose further that these rewrite rules were admitted in the order given
above (that is, 1 was admitted first, then 2, then 3, then 4, then 5, then 6).

(a) [2pts] Which rule is applied first when rewriting the expression (f (f (g

(b (f2)) x)))

(b) [3pts] One of the rewrite rules above can never be applied to any
expression. Which rule is that? Why can it never be applied?



(c)[7pts | Show all steps in rewriting the following to its final form:

(£ (g (ga (hb) (£ (£ )

(c)[8pts | Show all steps in rewriting the following(rewrite until no more rules
apply):
(f (g (f (g (ha) b)) (f (g ab)))

Problem2 (40 pts)

Consider the following functions:

;; app : tlp x tlp —> tlp
;3 Append two lists
(defun app (x y)
(if (endp x)
y
(cons (car x) (app (cdr x) y))))

;; rev @ tlp -> tlp
;; Reverse a list
(defun rev (x)
(if (endp x)
nil
(app (rev (cdr x)) (list (car x)))))

;; returns true if X contains a, nil otherwise
(defun in (a X)
(cond ((endp X) nil)

((equal a (car X)) t)

(t (dn a (cdr X)))))

(defun len (1)
(if (endp 1)
0
(+ 1 (Len (cdr 1)))))

(a) (5pts) Lets try to prove the following theorem in ACL2:



(defthm in-rev
(equal (in e (rev x))

(in e x)))

ACL2 got stuck at this checkpoint, what lemma can you give it to help

it prove the above theorem.

Subgoal *1/2°4°

(IN X1 (APP (REV X2) (LIST X1)))
(5 pts) Lets try to prove the following in ACL2:

(defthm len-rev
(equal (len (rev x))
(len x)))

ACL2 got stuck at this checkpoint, what lemma can you give it to help

it prove the above theorem.

Subgoal *1/17°7

(IMPLIES (EQUAL (LEN (REV X2)) (LEN X2))
(EQUAL (LEN (APP (REV X2) (LIST X1)))
(+ 1 (LEN X2))))

Consider the following definition for compressing a list of elements.

(defun compress (s)
(cond ((endp s) s)
((endp (cdr s)) s)
((equal (first s) (second s))
(compress (rest s)))
(t (cons (first s)
(compress (rest s))))))

Evaluate the following.

1. [1pt |(compress (list 1 2 2 1 1 0))

2. [1pt ](compress nil)

3. [Ipt |(compress (list 4 5 4 5))

You are trying to prove the following theorem with ACL2s



(defthm compress-compress
(equal (compress (compress s))
(compress s)))

But ACL2s fails. The relevant part of what ACL2s reports is:

**x* Key checkpoint at the top level: *x*x*

Goal
(EQUAL (COMPRESS (COMPRESS S))
(COMPRESS S))

**x* Key checkpoint under a top-level induction: ***

Subgoal *1/4.3.4°
(IMPLIES (AND (CONSP S4)
(NOT (EQUAL (CAR (COMPRESS X4)) (CAR X4)))
(EQUAL (COMPRESS (COMPRESS S4))
(COMPRESS $84)))
(NOT (CONSP (COMPRESS S4))))

ACL2 Error in ( DEFTHM COMPRESS-COMPRESS ...): See :DOC failure.

skkokkkkk FATLED skokokokokokokok

4. [5 pts] What lemma would you prove so that ACL2s can make progress
with Subgoal ¥1/4.3.4’? You don’t have to prove anything, but informally
explain why you think your conjecture is true.

5. [12 pts] Show how ACL2s will use the theorem you identified above to
go further than it did previously. All you need to demonstrate is that your
theorem, when used as a rewrite rule by ACL2s, enables ACL2s to simplify
Subgoal *1/4.3.4°. Identify the subexpression that your theorem matches and
show what it gets rewritten to.



6. [10 pts] You made some progress (I hope). Congratulations! You try to
prove compress-compress again. Here is what you see.

*%* Key checkpoint at the top level: *x*x

Goal
(EQUAL (COMPRESS (COMPRESS S))
(COMPRESS S))

*%* Key checkpoint under a top-level induction: ***

Subgoal *1/4.3’
(IMPLIES (AND (CONSP S4)
(NOT (EQUAL (CAR (COMPRESS S4)) (CAR S4))))
(NOT (EQUAL (COMPRESS (COMPRESS S4))
(COMPRESS S4))))

ACL2 Error in ( DEFTHM COMPRESS-COMPRESS ...): See :DOC failure.
sokxkkkkk FATLED soksokkokkk

Same as before. What theorem would you prove so that ACL2s can make
progress with Subgoal *1/4.3’? Informally explain why you think your con-
jecture is true and show how ACL2s will use the theorem you identified above

as a rewrite rule to simplify Subgoal *1/4.3". Identify the subexpression that
your theorem matches and show what it gets rewritten to.

Problem 3 (30 points)

Suppose you just completed a session with ACL2 where you proved theorems
leading to the following rewrite rules.

—_

. (g (h2)) = (g 2)
(g Exy)) =Ex (Eyx)
L (Ey (fF (2 x))=(h2)

=~ W N

L Ex(Ey2)) = E xy) 2)

Assume the rewrite rules were admitted in the order given above (that is, 1
was admitted first, then 2, then 3, then 4). Answer all questions based on
what ACL2s will do.



Consider the following expression to be rewritten:

(g (fy (£ (h2) %))

(a) [3pts] Consider subexpression (f y (f (h z) x)) in the expression above.
Which is the first rule that will match and be applied?

(b) [3pts] One of the rewrite rules above can never be applied to any
expression. Which rule is that? Why can it never be applied?

(c) [8pts] What is the final result of applying all applicable rewritings to
the expression? Show the sequence of rewrite steps that led to your
answer.

(d) [8pts] Now rewrite this:

(g (f (g (£ (hy) (g (hx)))) (fz(hx))))

(e) [8pts|One more rewriting exercise:

(g (h (f (g (fx (£ (hy) y») (g (b (hz))))))

Problem 4(10pts)

Note:This problem may appear similar to the problem you have seen earlier,
but in the reverse. But generalization is a stronger concept, it is not as
restricted as simple substitution. Intuitively v is a generalization of ¢, if its
easy to prove ¢ from 1, but not vice-versa. Lets make this definition a little
more precise:

Yo

= {Instantiation, plus reasons that relieve hyps}

¢

In the following problems, write True, if 9 is a generalization of ¢, otherwise
write False. If true, give the instantiation, that is give the substitution o
such that ¥|, — ¢. And also mention how the assumptions(hypotheses) of
1 are getting relieved by ¢.



. ¢(0Original):
(implies (consp x)
(consp (app x x)))

1) (Generalization):
(implies (and (consp x)
(consp y))
(consp (app x y)))

. ¢(0Original):
(implies (consp x)
(consp (app x x)))

1) (Generalization):
(implies (or (consp x)
(consp y))

(consp (app x y)))

. ¢(0Original):
(implies (and (integer-listp x)
(integer-listp y))
(true-listp (app y x)))

1 (Generalization) :
(implies (and (true-listp x)
(true-listp y))
(true-listp (app x y)))

. ¢(0riginal):
(implies (and (integer-listp x)
(integer-listp y))
(integer-listp (app x y)))

1) (Generalization):
(implies (and (integer-listp x)
(integer-listp y))
(true-listp (app x y)))

. ¢(0Original):
(implies (and (true-listp x)
(integer-listp y))



(integer-listp (app x y)))

1) (Generalization):
(implies (and (integer-listp x)
(integer-listp y))
(true-listp (app x y)))

. ¢(0riginal):
(= (fact*x-acc x 1)
(fact x))

1) (Generalization):
(implies (natp acc)
(= (fact*-acc x acc)
(x (fact x) acc)))

. ¢(Original):
(true-listp (app x (cons y nil)))

1) (Generalization):
(implies (true-listp y)
(true-listp (app x y)))



