Addition
1. Half adder

One bit addition can be accomplished with an XOR gate
(aand b are the input to the half adder)

Sum a Xor b
0 1 0
+0 +0 +1
0 1 1
CarryaAb
0 1 0
0 0 0
0 0 0
2. Full Adder
cin a b
0 0 0
0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
1 1 1

Sum=a(+)c(+)c
Cout =cinA(aVb)V(aAb)

You can also realize a Full Adder using two Half Adders.

3. Ripple Carry Adder
The Full adders above can be concatenated to add two n bit

From the Truth table of the the Full Adder
Cout =cinA(aVb)V(aAb)

In the above figure
P;=aVb (P indicates propagation)
and G; = aAb (G indicates Generation)

With these definition we can intuitively understand C, = (P;AC;) V G;

+1
10

)
c
3

4~ 0020 ==o0

The Carry in from the previous stage (i -1) would be propagated to Stage i only if Pi is True.
The stage i would generate a carry irrespective of the the carry out from the stage (i-1).

Assuming each gate incurs a Unit delay (irrespective of the number of inputs to the gate and the logic it
implements), the delay to get the final result Sum of all n-bits.
T(ripple-adder) = TFA(x,y --> Cout) + (n-2) TFA(Cin---> Cout) - TFA(Cin-->Sn)

(The assumption above that each gate incurs a unite delay is is a simplified assumption. The XOR gate has more
delay than a AND/OR gate. Also the delay depend on the number of inputs to the gate.)

4. Carry Look Ahead Adder.

The carry look-ahead adder is based on computing the carry bits C; prior to the summation. The
carry look-ahead logic makes use of the relationship between the carry bits C; and the input bits
A; and B;. We define two variables G; and P;, named as the generate and the propagate functions,
as follows:

Gi = AB;,
Then, we expand C] in terms of Gy and Py, and the input carry Cp as

Cl = AOBO + CO(AO + Bo) = GO + C()PO .

Similarly, C5 is expanded in terms Gy, P;, and C] as

Ci=G+CP .
When we substitute C in the above equation with the value of C} in the preceding equation, we
obtain C) in terms Gy, G, Py, P, and Cj as

Ci=G+C1PL=G + (Go + C[)Po)Pl =G+ GoPL+ CoPy Py .

Proceeding in this fashion, we can obtain C; as function of Cy and Gy, G1,...,G; and Py, P,..., P;.
The carry functions up to Cy are given below:

Ci = Go+Coby
Cy = Gi1+GoPL+CohPr
C3 = G+ G 1P+ GoPIP+CoRy P P,
Cy = G3+GoP3+ G PP+ GoPyPoPy + CoPo P PoPs .
The carry look-ahead logic uses these functions in order to compute all C;s in advance, and then

feeds these values to an array of EXOR gates to compute the sum vector S. The ithe element of
the sum vector is computed using

The total delay in carry look ahead adders is much less than the ripple carry adder.
But this comes at the cost of large number of gates (which means it occupies more space and
like real estate on ground, the real estate on a chip is also expensive)

Carry Lookahead

(b)

Reference:

To get more intuitive feel of the Carry Look ahead adder and Ripple Carry Adders and their corresponding delay,
you should spend some time with the following simulators. They model the various parameters required in
designing the Adders.

http://www.ecs.umass.edu/ece/koren/arith/simulator/Add/ripple/ripple.html
http://www.ecs.umass.edu/ece/koren/arith/simulator/Add/lookahead/

