CS 2800, Logic and Computation Fall 2009
Pete Manolios Propositional Logic Lectures

1 Propositional Logic

The study of logic was initiated by the ancient Greeks, who were concerned
with analyzing the laws of reasoning. They wanted to fully understand what
conclusions could be derived from a given set of premises. Logic was consid-
ered to be a part of philosophy for thousands of years. In fact, until the late
1800’s, no significant progress was made in the field since the time of the an-
cient Greeks. But then, the field of modern mathematical logic was born and
a stream of powerful, important, and surprising results were obtained. For
example, to answer foundational questions about the mathematics, logicians
had to essentially create what later because the foundations of computer sci-
ence. In this class, we’ll explore some of the many connections between logic
and computer science.

We’ll start with propositional logic, a simple, but surprisingly powerful
fragment of logic. Expressions in propositional logic can only have one of
two values. We'll use T" and F' to denote the two values, but other choices
are possible, e.g., 1 and 0 are sometimes used.

The expressions of propositional logic include:

1. The constant expressions true and false: they always evaluate to 1" and
F, respectively.

2. The propositional atoms, or more succinctly, atoms. We will use p, ¢,
and r to denote propositional atoms. Atoms range over the values T
and F'.

Propositional expressions can be combined together with the proposi-
tional connectives, which we include the following.

The simplest connective is negation. Negation, —, is a unary connective,
meaning that it is applied to a single expression. For example —p is the
negation of atom p. Since p (or any propositional expression) can only have
one of two values, we can fully define the meaning of negation by specifying
what it does to the value of p in these two cases. We do that with the aid of
the following truth table.
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What the truth table tells us is that if we negate 7" we get I’ and if we
negate F' we get T'.

Negation is the only unary propositional connective we are going to con-
sider. Next we consider binary (2-argument) propositional connectives, start-
ing with conjunction, A. The conjunction (and) of p and ¢ is denoted p A ¢
and its meaning is given by the following truth table.
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Each row in a truth table corresponds to an assignment, one possible way
of assigning values (T or F') to the atoms of a formula. The truth table
allows us to explore all relevant assignments. If we have two atoms, there
are 4 possibilities, but in general, if we have n atoms, there are 2" possible
assignments we have to consider.

In one sense, that’s all there is to propositional logic, because every other
connective we are going to consider can be expressed in terms of — and A,
and almost every question we are going to consider can be answered by the
construction of a truth table.

Next, we consider disjunction. The disjunction (or) of p and ¢ is denoted
pV q and its meaning is given by the following truth table.

pvyg

o N NS
1 et Ran| S
NN <

In English usage, “p or q” often means p or ¢, but not both. Consider
the mother who tells her child:

You can have ice cream or a cookie.



The child is correct in assuming this means that she can have ice cream or a
cookie, but not both.

As you can see from the truth table for disjunction, in logic "or” always
means at least one.

We can write more complex formulas by using several connectives. For
example, =pV —q and we can construct truth tables for such expressions quite
easily. First, determine how many distinct atoms there are. In this case there
are two; that means we have four rows in our truth table. Next we create a
column for each atom and for each connective. Finally, we fill in the truth
table, using the truth tables that specify the meaning of the connectives.

plqg|-p|—q|pVg
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Next, we consider implication, =. This is called logical (or material) im-
plication. In p = ¢, p is the antecedent and ¢ is the consequent. Implication
is often confusing to students because the way it is used in English is quite
complicated and subtle. For example, consider the following sentences.

If Obama is 75 years old, then the inhabitants of this city are all
dragons.

Is it true?
What about the following?

If Obama is president, then the inhabitants of this city are all
dragons.

Logically, only the first is true, but most English speakers will say that
if there is no connection between the antecedent and consequent, then the
implication is false.

Why is the first logically true? Because here is the truth table for impli-
cation.
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Here are two ways of remembering this truth table. First, p = ¢ is
equivalent to —=p V ¢q. Second, p = ¢ is false only when p is T', but ¢ is F.
This is because you should think of p = ¢ as claiming that if p holds, so does
g. That claim is true when p is F'. The claim can only be be invalidated if p
holds, but ¢ does not.

As a final example of the difference between logical implication (whose
meaning is given by the above truth table) and implication as commonly
used, consider the mother telling her child:

If you behave, I'll get you ice cream.

The child rightly expects to get ice cream if she behaves, but also expects
to not get ice cream if she doesn’t: there is an implied threat here.

The point is that while the English language is subtle and open for in-
terpretation. In order to avoid misunderstanding mathematical fields, like
Computer Science tend to use what is often called “mathematical English,”
a very constrained version of English, where the meaning of all connectives
is clear.

Above we said that p = ¢ is equivalent to —p V ¢. This is the first indi-
cation that we can often reduce propositional expressions to simpler forms.
In your homework, simpler means less connectives, so which of the above is
simpler?

Can we express the equivalence in propositional logic? Yes, using equality
of Booleans, =, as follows (p = q¢) = (-p V q).

Here is the truth table for =.
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How would you simplify the following?
1. pA—p

3.p=p



Here is one way.
1. (pA—p) = false
2. (pV —p) = true
3. (p=p) = true

The final binary connective we will consider is ¢, xor. There are two
ways to think about xor. First, note that xor is ezclusive or, meaning that
exactly one of its arguments is true. Second, note that xor is just the Boolean
version of not equal. Here is the truth table for 6.
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We will also consider a ternary connective, i.e., a connective with three
arguments. The connective is ite, which stands for “if-then-else,” and means
just that: if the first argument holds, return the second (the then branch),
else return the third (the else branch). Since there are three arguments, there
are eight rows in the truth table.

ite(p, q,7)
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Here are some very useful ways of characterizing propositional formulas.
Start by constructing a truth table for the formula and look at the column
of values obtained. We say that the formula is:

e satisfiable if there is at least one T’



e unsatisfiable if it is not satisfiable, i.e., all entries are F
o falsifiable if there is at least one F'

e valid if it is not falsifiable, i.e., all entries are T'

We have see examples of all of the above. For example, pAq is satisfiable,
since the assignment that makes p and ¢ 7" makes p A ¢ T'. This example is
also falsifiable, as evidenced by the assignment that makes p F and ¢ T. An
example of an unsatisfiable formula is p A —p. If you construct the truth table
for it, you will notice that every assignment makes it F' (so it is falsifiable
too). Finally, an example of a valid formula is p VV —p.

Notice that if a formula is valid, then it is also satisfiable. In addition, if
a formula is unsatisfiable, then it is also falsifiable.

Validity turns out to be really important. A valid formula, often also
called a theorem, corresponds to a correct logical argument, an argument
that is true regardless of the values of its atoms. For example p = p is valid.
No matter what p is, p = p always holds.

2 The Power of Xor

Let us take a short detour, I'll call “the power of xor.”

Suppose that you work for a secret government agency and you want to
communicate with your counterparts in Europe. You want the ability to
send messages to each other using the Internet, but you know that other spy
agencies are going to be able to read the messages as they travel from here
to Europe.

How do you solve the problem?

Well, one way is to have a shared secret: a long sequence of F’s and
T’s (0’s and 1’s if you prefer), in say a code book that only you and your
counterparts have. Now, all messages are really just sequences of bits, which
we can think of as sequences of F’s and T”’s, so you take your original message
m and xor it, bit by bit, with your secret s. That gives rise to coded message
¢, where ¢ = m & s. Notice that here we are applying = and & to sequences
of Boolean values, often called bit-vectors.

Anyone can read ¢, but they will have no idea what the original message
was, since s effectively scrambled it. In fact, with no knowledge of s, an
eavesdropper can extract no information about the contents of m from c.



But, how will your counterparts in Europe decode the message? Notice
that some propositional reasoning shows that m = c¢® s, so armed with your
shared secret, they can determine what the message is.

3 Complete Boolean Bases

Next, think about this claim: you can represent all the Boolean connectives

using just ite (and the constants false, true).
Also, consider the claim that for any Boolean formula, there is an equiv-

alent formula consisting of only the following connectives:

1. A -

2.V,

Here is a partial answer.
—p = ite(p, false, true)

pV q = ite(p, true, q)
p A q = ite(p, q, false)
p = q = ite(p, q, true)
p=q=ite(p,q,7q)
p & q = ite(p,—q,q)

4 Propositional Logic in ACL2s

This class is about logic from a computational point of view and our vehicle
for exploring computation is ACL2. ACL2s has ite: it is just if!

A difference is that ACL2s really has generalized booleans: instead of
false and true we have: nil and non-nil.

For example the way that ACL2s evaluates (if a b c¢) is it checks if
a=nil; if so, it returns c, else it returns b.

What does ACL2s do on the following?

o (if t 2 3)



e (if 3 4 b)

So if can return non-Booleans and even the test need not be Boolean.
Remember that in the test of an if, every object in the ACL2s universe that
is non-nil is coerced to t.

In ACL2s we have following correspondence.

e jle: if
e A: and

V: or

=: implies
e =: iff (or equal)
e P xXor

We saw how to evaluate if. What about the rest of the connectives? They
are all defined in terms of if, so try the following commands in ACL2s.

e :trans (and a b). This tells us that (and a b) is really (if a b
nil).

:trans (or a b). This tells us that (and a b) isreally (if a a b).

e :pe implies. This tells us that the implies is defined to be (if p
(if q t nil) t)).

:pe iff. This tells us that iff is defined to be (if p (if q t nil)
(if g nil t))).

e :pe xor. This tells us that xor is defined to be (if p (if q nil t)
(if q t nil)))).

One more thing to note is that and and or take an arbitrary number of
arguments. Here are some examples.

e (and) is t

e (or) isnil



(and p) is p

(or p) isp

(and p q r) is (if p (if q r nil) nil)

(or pqur)is (if p p (if q q 1))

Here is a design guideline for using Boolean connectives.

Design guideline: do not use and, or, implies, iff on non-Booleans.

Remember that ACL2s is in the business of proving theorems. Since
propositional logic is used everywhere, it would be great if we could use
ACL2s to reason about propositional logic. In fact, we can.

Consider trying to prove that a propositional formula is valid. We would
do that now, by constructing a truth table. We can also just ask ACL2s. For
example, to check whether the following is valid

(p=q) =(pVa
We can ask ACL2s the following query
(thm (iff (implies p q) (or (mot p) q)))

ACL2s responds with the output shown in ACL2s Output Figure 77?.

ACL2 >QUERY (thm (iff (implies p q) (or (mot p) q)))
<< Starting proof tree logging >>

But we reduce the conjecture to T, by case analysis.

Q.E.D.

Summary

Form: ( THM ...)

Rules: NIL

Warnings: None

Time: 0.00 seconds (prove: 0.00, print: 0.00, proof tree: 0.00, ...)

Proof succeeded.

ACL2s Output Figure 1: Successful proof




In fact, if a propositional formula is valid (that is, it is a theorem) then
ACL2s will definitely prove it. We say that ACL2s is a decision procedure
for propositional validity. A decision procedure for propositional validity is
program that given a formula can decide whether or not it is valid. We saw
that ACL2s indicates that it has determined that a formula is valid with
“Q.E.D.” ! How does ACL2 indicate that a formula is not valid? Let’s try
checking whether the following is valid:

(p@qg) =M@V

We can ask ACL2s the following query
(thm (iff (xor p q) (or p q)))

ACL2s responds with the output shown in ACL2s Output Figure ?77?.

5 Decision Procedures

When a formula is not valid, it is falsifiable, so there exists an assignment
that makes it false. Such an assignment is often called a counterezample
and can be very useful for debugging purposes. ACL2s does not provide
counterexamples. However, since ACL2s is a programming language, we can
use it to write our own decision procedure that does provide counterexamples
to validity. I showed you such a program in class. Try writing your own.

While we are on the topic of decision procedures, it is worth pointing that
we characterized formulas as satisfiable, unsatisfiable, valid, or falsifiable.
Let’s say we have a decision procedure for one of these four characterizations.
Then, we can, rather trivially, get a decision procedure for any of the other
characterizations.

Why?

Well, consider the following.
Proof

1Q.E.D. is abbreviation for “quod erat demonstrandum,” Latin for “that which was to
be demonstrated.”
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ACL2 >QUERY (thm (iff (xor p q) (or p q)))
<< Starting proof tree logging >>
By case analysis we reduce the conjecture to

Goal’

(COND ((XOR P @ (OR P Q))
((OR P Q) NIL)
(T T)).

This simplifies, using the :definition XOR, to

Goal’’
(IMPLIES P (NOT Q)).

This simplifies, using trivial observations, to

Goal’’’
NIL.
~~” Checkpoint Goal’’’ ~~~7

Summary

Form: ( THM ...)

Rules: ((:DEFINITION IFF) (:DEFINITION XOR))

Warnings: None

Time: 0.00 seconds (prove: 0.00, print: 0.00, proof tree: 0.00, ...)
sokkkkkkk FATLED sokkokokokkx

ACL2s Output Figure 2: Failed proof

Unsat f

= { By the definition of sat, unsat }
not (Sat f)

= { By definition of Sat, Valid }
Valid —f

= { By definition of valid, falsifiable }
not (Falsifiable =f) O

How do we use these equalities to obtain a decision procedure for either
of unsat, sat, valid, falsifiable, given a decision procedure for the other?

11




Well, let’s consider an example. Say we want a decision procedure for

validity given a decision procedure for satisfiability.
Valid f

= { not (Sat f) = Valid—f, by above }
not (Sat —f)

What justifies this step? Propositional reasoning and instantiation.

Let p denote “(Sat f)” and ¢ denote “(Valid —f).” The above equations
tell us —p = ¢, so p = —q.

If more explanation is required, note that (—p = q) = (p = —q) is valid.
That is, you can transfer the negation of one argument of an equality to the
other.

Make sure you can do this for all 12 combinations of starting with a
decision procedure for sat, unsat, valid, falsifiable, and finding decision pro-
cedures for the other three characterizations.

There are two interesting things to notice here.

First, we took advantage of the following equality:

((p=q¢)=p=9)

There are lots of equalities like this that you should know about, so I'll
give you a list.

Second, we saw that it was useful to extract the propositional skeleton
from an argument. We'll look at examples of doing that. Initially this will
involve word problems, but later it will involve reasoning about programs.

6 Useful Equalities

Here are some simple equalities involving the constant true.
1. pV true = true
2. pAtrue=p
3. p = true = true
4. true =>p=p

5. p=true =p

12



6. p@ true = —p

Here are some simple equalities involving the constant false.
1. pV false =p

2. p A false = false

3. p= false = —p

4. false = p = true

5. p = false = —p

6. p @ false =p

Why do we have separate entries for p = false and false = p, above, but
not for both p V false and false V p? Because V is commutative. Here are
some equalities involving commutativity.

1. pVg=qVDp
2.pANg=qAp
3. p=q=q=p
4. phBq=q®p

What about =. Is it commutative? Is p = ¢ = ¢ = p valid? No. By the
way, the righthand side of the previous equality is called the converse: it is
obtained by swapping the antecedent and consequent.

A related notion is the inverse. The inverse of p = ¢ is =p = —¢. Note
that the inverse and converse of an implication are equivalent.

Even though a conditional is not equivalent to its inverse, it is equivalent
to its contrapositive:

(p=q) = (~qg = -p)

The contrapositive is obtained by negating the antecedent and consequent
and then swapping them.

While we're discussing implication, a very useful equality involving im-
plication is:

(p=q¢) =(pVa)

13



Also, we often want to replace = by =-, which is possible due to the
following equality:

(r=q)=[p= 9N (g=Dp)

Here are more equalities.

—_

——p=p
2. —true = false
3. —false = true
4. pAp=p
5. pVp=p
6. p=p=true
7. p=p=true
8. p®p = false
9. p A —p = false

10. pV —p = true

11. p=—p=-p

12. -p=p=p

13. p = —p = false

14. p ® —p = true

Here’s one set of equalities you have probably already seen: DeMorgan’s
Laws.

L =~(pANg)=-pV—q
2. 2(pVg)=-pA—q

Here’s another property: associativity.

14



L ((pva)Vvr)=(V(gVr))
2. ((pAgAT)=(A(gAT))
3. (p=g=r)=p=@=r)
4L (poger)=pa(@or))

We also have distributivity:
Lpn(gvr)={@AqgV(pAT)
2.pVl(gAr)=(@VaApVr)
We also have transitivity:
Lip=qAg=r)]=(p=r)
2. [p=gr(g=r)]=(p=r)

Last, but not least, we have absorption:

L.pA(pVg =p
2.pV(pAg)=p

Let’s consider absorption more carefully. Here is a simple calculation:
Proof

pA(PVa)
= { Distribute A over V }
(pAP)V(PAQ)
={(pAp)=p}
pV(pAg) O
The above proof shows that p A (pV q) =pV (p A q), so if we show that
p A (pVq) = p, we will have also shown that pV (p A q) = p.
Let’s try to show that p A (p V q) = p. We will do this using a proof
technique called case analysis.

Case analysis: If f is a formula and p is an atom, then f is valid iff
both flp truey a0d fl(p faisey are valid. By f|z) we mean, substitute = for p

in f.
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Proof
pA(PVag =p

= { Case analysis }

true A (true V q) = true and false A (false V q) = false
= { Basic Boolean equalities }

true = true and false = false
= { Basic Boolean equalities }

true [

7 Word Problems

Next, we consider how to formalize word problems using propositional logic.
Consider formalizing and analyzing the following.

Tom likes Jane if and only if Jane likes Tom. Jane likes Bill.
Therefore, Tom does not like Jane.

Here’s the kind of answer I expect you to give.

Let p denote “Tom likes Jane”; let ¢ denote “Jane likes Tom”; let
r denote “Jane likes Bill.”

The first sentence can then be formalized as p = q.
We denote the second sentence by 7.

The third sentence contains the claim we are to analyze, which
can be formalized as ((p = q) A1) = —p.

This is not a valid claim. A truth table shows that the claim
is violated by the assignment that makes p,q, and r true. This
makes sense because r (that Jane likes Bill) does not rule out ¢
(that “Jane likes Tom”), but ¢ requires p (that “Tom likes Jane”).

Consider another example.
A grade will be given if and only if the test is taken. The test

has been taken. Was a grade given?
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Anything of the form “a iff ” is formalized as a = b. The problem now
become easy to analyze.

John is going to the party if Mary goes. Mary is not going.
Therefore, John isn’t going either.

How do we formalize “a if b”? Simple: b = a. Finish the analysis.

John is going to the party only if Mary goes. Mary is not going.
Therefore, John isn’t going either.

How do we formalize “only if”? A simple way to remember is that “if”
is one direction of and “if and only if” and “only if” is the other direction.
Thus, “a only if 0”7 is formalized as a = b.

Try this one.

John is going to the party only if Mary goes. Mary is going.
Therefore, John is going too.

One more.

Paul is not going to sleep unless he finishes the carrot hunt on
Final Fantasy XII. Paul went to sleep. Therefore, he finished the
carrot hunt on Final Fantasy XII.

How do we formalize “a unless b”7 It is =b = a. Why? Because “a
unless b” says that a has to be true, except when (unless) b is true, so when
b is true, a can be anything. The only assignment that violates “a unless b”
is when a is false and b is false. So, notice that “a unless b” is equivalent to
“a or b”.

One more example of unless.

You will not get into NEU unless you apply.
is the same as
You will not get into NEU if you do not apply.
which is the same as
You will not get into NEU or you will apply.
So, the hard part here is formalizing the problem. After that, even ACL2s

can figure out if the argument is valid.
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