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Abstract. Using an interactive theorem prover to reason about pro-
grams involves a sequence of interactions where the user challenges the
theorem prover with conjectures. Invariably, many of the conjectures
posed are in fact false, and users often spend considerable effort examin-
ing the theorem prover’s output before realizing this. We present a syn-
ergistic integration of testing with theorem proving, implemented in the
ACL2 Sedan (ACL2s), for automatically generating concrete counterex-
amples. Our method uses the full power of the theorem prover and asso-
ciated libraries to simplify conjectures; this simplification can transform
conjectures for which finding counterexamples is hard into conjectures
where finding counterexamples is trivial. In fact, our approach even leads
to better theorem proving, e.g., if testing shows that a generalization step
leads to a false conjecture, we force the theorem prover to backtrack, al-
lowing it to pursue more fruitful options that may yield a proof. The
focus of the paper is on the engineering of a synergistic integration of
testing with interactive theorem proving; this includes extending ACL2
with new functionality that we expect to be of general interest. We also
discuss our experience in using ACL2s to teach freshman students how
to reason about their programs.

1 Introduction

Users of interactive theorem provers such as ACL2 spend most of their time
and effort challenging the theorem prover to find proofs of conjectures. They
may start with a high-level theorem, only to find that a very long sequence of
other theorems must be proven before the theorem prover is convinced that the
original conjecture is in fact a theorem.

During this process users invariably challenge the theorem prover with con-
jectures that are false. For example, an intermediate lemma may be missing
some non-obvious hypotheses. In such cases, users routinely have a difficult time
determining whether the theorem prover failed because the conjecture is not



true or because the theorem prover cannot find a proof without further user
assistance.

Lightweight methods for quickly and automatically identifying false conjec-
tures have the potential to dramatically simplify the interactions between users
and theorem provers.

In this paper we explore the obvious, well-studied idea of using random test-
ing to try to find concrete counterexamples to conjectures. A naive approach
to random testing is unlikely to find counterexamples in all but the simplest of
cases. One reason is that it is highly unlikely that random assignments will sat-
isfy even relatively simple hypotheses. This is especially true in a theorem prover
for an untyped logic, like ACL2, where all variables can take on any value.

We use a general data definition framework that is integrated with our testing
framework. Together, they enable us to infer type information automatically
from hypotheses.

Unfortunately, hypotheses are often much more complex than a sequence
of type restrictions. Our first contribution shows how to overcome this prob-
lem by using the full power of ACL2 to simplify conjectures for better testing.
While previous work has suggested that subgoals generated during the proof
process can be tested independently, as far as we know, no one has ever de-
scribed or designed a system that does this automatically for a fully featured
interactive theorem prover. The effectiveness of our approach is magnified by
the use of libraries, including not only general-purpose libraries developed by
the user community over many years (e.g., for reasoning about arithmetic and
lists), but also domain-specific libraries developed for specific applications. Such
libraries may contain rules, typically conditional rewrite rules, as well as other
strategic guidance in the form of verified metatheoretic simplifiers, dynamically
computed hints, and so-called clause processors to connect to external tools.

Some of the challenges we faced in integrating testing and theorem proving
are due to the powerful proof procedures in ACL2, which can generate subgoals
that differ radically from the goals they receive. For example, proof procedures
may remove and introduce variables. How does one then take subgoal counterex-
amples and turn them into counterexamples for the original conjecture? Should
we test every subgoal, or is there some disciplined way of testing select subgoals?
Proof procedures may strengthen subgoals, making it possible to find counterex-
amples to subgoals derived from true conjectures. They may generate implied
facts that are not part of a subgoal, but that we can profitably mine for useful
information.

Proof procedures may also remove and/or modify “type” hypotheses (after
all ACL2 is untyped, so “type” hypotheses are just regular hypotheses and,
therefore, subject to rewriting and other forms of simplification). In fact, a vari-
able may wind up having multiple type hypotheses associated with it; so what is
the best strategy for generating random test cases that satisfy these hypotheses?
The way we deal with these issues is described in Section 4.

Our second contribution is to show, perhaps surprisingly, that not only can
theorem proving lead to better testing, but testing can lead to better theorem
proving. For example, suppose that the theorem prover generalizes a goal, but
subsequent testing shows that the resulting conjecture is not valid. Then we can
force the theorem prover to backtrack so that instead of painting itself into a



corner, the theorem prover can pursue more fruitful options that may yield a
proof. In fact, this idea is applicable to several proof procedures within ACL2,
and can also be used to help the theorem prover choose from a set of applicable
proof steps. We describe this idea in Section 5, where we also present an example
from the ACL2 regression suite.

Our third contribution, described in Section 6, consists of enhancements to
the computed hint mechanism of ACL2 required for the integration of testing
with theorem proving. The first enhancement involves changing ACL2 so that it
records the reasons for eliding variables. We need this information to generate
counterexamples for top-level conjectures from subgoal counterexamples. This
enhancement is discussed in Section 4. The remaining three enhancements are
to the computed hint mechanism in ACL2. Computed hints are a very power-
ful mechanism that allow users to compute hints dynamically, by examining the
subgoals ACL2 generates during the theorem proving process. The first enhance-
ment to computed hints is that they are now given access to various sources of
derived facts that are not part of a subgoal, but that can be quite useful for
testing. The second enhancement, which we call override-hints, provides a kind
of meta-programming capability for computed hints that allows us to add testing
hints dynamically to interesting subgoals, without interfering with user-provided
hints. The third enhancement to computed hints, backtrack hints, permits a lim-
ited form of backtracking. We expect that these enhancements will be of use
to the wider ACL2 community, and may be of interest to developers of other
theorem proving systems.

Our fourth contribution involves the implementation and evaluation of the
work presented in this paper. All of our work has been implemented in ACL2s,
the ACL2 Sedan [7]. ACL2s uses ACL2 as its core reasoning engine, but was de-
signed with particular emphasis on usability by a wide range of users. In partic-
ular, ACL2s provides a modern integrated development environment in Eclipse,
supports several modes of interaction, and incorporates a powerful automated
termination analysis engine [18]. ACL2s is freely available, and well-supported.
These enhancements have made it possible for us to use ACL2s to teach hun-
dreds of freshman students at Northeastern University how to reason formally
about programs.

The work in this paper is motivated by our experience teaching college fresh-
men. Even advanced freshmen have not been exposed to the idea of program
verification. However, all of the students do know how to program and how to
evaluate a program on concrete inputs. Therefore, it is easy to explain how to
falsify a conjecture with testing: find inputs such that evaluating the conjecture
with these inputs yields false. A conjecture is true if no such inputs exist. This
is a good way of teaching students about specification in a way that directly
connects what they know, namely evaluation, to the new notions of specification
and verification. When they first start, they often make silly mistakes, specifying
conjectures that they mistakenly think are true. Therefore, tools that automat-
ically falsify conjectures and provide witnesses that students can evaluate can
serve an important pedagogical role.

We have designed our testing framework with both beginners and experts in
mind. The interfaces are as simple as possible. In fact, no special incantations
are required to use testing. In ACL2s, it will just happen automatically. We



have successfully used ACL2s augmented with testing in our freshman classes.
We expect our work to make ACL2s a more useful tool for students as well as
the wider community. We briefly discuss our experiences in Section 7.

2 Related Work

2.1 Counterexample Generation in Interactive Theorem Provers

Random Testing is a well-studied, scalable, lightweight technique for finding
counterexamples to executable formulas. Random testing has been widely adopted
in the functional language community, as seen by the recent success of QuickCheck
and related tools [6]. The theorem-proving community has also started to inte-
grate random testing, for example in Isabelle/HOL [1], Agda [8] and PVS [19].
Ideas for combining formal specifications and testing date back to at least 1981 [5].
The other standard technique for generating counterexamples for a conjecture
is to use a SAT or SMT solver. This requires translating from a rich, expressive
logic to a restricted logic with limited expressiveness. The major constraint on
such approaches is that a counterexample to the translated formula should also
be a counterexample to the original formula. However, the absence of a coun-
terexample does not imply that the conjecture is true. Some tools making use
of the above technique are Pythia [20], SAT Checking [21], Refute [22] and Nit-
pick [2]. Another line of work translates to SAT or other decidable fragments
of first order logic for which efficient decision procedures exist, but only when
the original conjecture is in fact expressible in the decidable fragment [16, 17, 9].
ACL2 has included a related capability since 1995, when BDDs with rewriting
were integrated into ACL2 [12]. The work mentioned above has the same goal
as our work: to exhibit counterexamples to false conjectures. However, unlike
our work, none of the above mentioned approaches is a fully automated method
that uses an interactive theorem prover to generate counterexamples for arbi-
trary conjectures.

2.2 Combining testing and theorem proving

One of the first convincing examples of combining testing and proving was carried
out using Agda [8]. Random testing was used to check for counterexamples, and
the point was made that the user could apply random testing also to subgoals.
However, in contrast to our work, testing and proving were not integrated in an
automated way.

Another instance of leveraging a theorem prover to do better testing is the
HOL-Testgen tool [4], which was designed for test case generation. For example,
it was used to construct interesting test cases for black box testing of AVL tree
implementations.

Our approach seamlessly integrates ACL2 theorem proving with testing, with
a high level of automation. We know of no previous work that integrates testing
and proving in a way that makes testing an invisible part of a proof attempt,
and makes reasoning an automated part of testing.



3 Test Generation

ACL2 formulas tend to be executable; hence testing in ACL2 simply involves
executing a formula under an instantiation of its free variables.1

For testing to be effective, the variables should be bound to values satis-
fying the “type-like” hypotheses of the formula. While ACL2 is syntactically
untyped, the ACL2 value universe is divided into 14 pairwise-disjoint “primitive
types” which include {0}, the positive integers, the positive non-integer rationals,
the negative integers, the negative non-integer rationals, the complex rationals,
{nil}, {t}, other symbols, null-terminated non-empty lists, conses that are not
null-terminated lists, strings, characters, and everything else (the universe is not
closed). ACL2 users provide the prover with type information by specifying type
constraints (hypotheses such as (stringp x)).

One cannot create new types in ACL2, in the sense that one cannot define
a new non-empty set of values that provably extends the ACL2 value universe.
Rather, one defines a “type” by defining a predicate that recognizes a subset of
the ACL2 universe (e.g., true-listp).

ACL2s includes a data definition framework that supports and automates
the generation of such user-defined data types. For example, the following form
defines a list of integers (loi).

(defdata loi (listof integer))

Given the above form, ACL2s will automatically generate a type predicate loip,
which recognizes lists of integers. The data definition framework also supports
testing by generating nth-loi, a type enumerator that maps natural numbers
into lists of integers. In general, a type enumerator for type T is a surjective
function from natural numbers to T . ACL2s will automatically generate a type
enumerator for any new data types defined using the data definition framework.
ACL2s also proves certain theorems and updates a global table maintaining
metadata for existing datatypes, e.g., it will prove and then record that loi is a
subtype of true-list. Below we show what loip and nth-loi evaluate to on
simple examples.

(loip ’(-1 -23 -42 7 13)) = T

(nth-loi 26945) = (24 -5 1 0)

The data definition framework in ACL2s provides type enumerators for the
primitive types and for types that are combinations of primitive types (e.g.,
the natural numbers, integers, rationals, and lists). It also fully supports user-
defined union types, product types, list types, record types, and enumerated
types. ACL2s even supports custom types (e.g., prime numbers), but then the
burden of generating the enumerator falls on the user.

To enable effective testing, one should use type predicates from the data def-
inition framework (e.g., loip) to specify the types of the free variables in the
hypotheses of a conjecture. The corresponding type enumerator (e.g., nth-loi)
can then be used to generate test samples. There are many ways in which test

1 Many other theorem provers also provide various levels of support for executable
formulas.



generation can proceed. For example, we can enumerate test instances up to
a certain size; we can randomly sample; we can do both. Currently we ran-
domly sample. Furthermore, the separation of concerns between enumerators
and random number generators also gives us the flexibility to choose any kind
of random distribution. Currently we have support for pseudo-geometric and
pseudo-uniform random distributions.

To show the testing framework in action, we pick a classic example. After
defining rev, the user tests that taking the reverse of a reversed list gives back
the original list:

(defun rev (x)

(if (endp x)

nil

(append (rev (cdr x)) (list (car x)))))

(top-level-test? (equal (rev (rev x)) x))

The result is the following output:

Random testing with type expression alist ((X . ALL))

We falsified the conjecture. Here are counterexamples:

-- (X 0)

-- (X "ba")

Cases in which the conjecture is true include:

-- (X NIL)

-- (X (U |h|))

...

This illustrates a common mistake made by new users: ACL2 is a logic of
total functions, but new users often assume that a conjecture is restricted to the
domain of interest when specifying conjectures. The logic needs all assumptions
to be given explicitly. Notice that we not only generate counterexamples, but
we also generate witnesses: examples which satisfy both the hypotheses (none in
this case) and conclusions of conjectures. By comparing witness and counterex-
amples, the user can easily add the missing type hypothesis:

(top-level-test? (implies (true-listp x)

(equal (rev (rev x)) x)))

Top-level-test? now reports only witnesses:

Random testing with type expression alist ((X . TRUE-LIST))

Cases in which the conjecture is true include:

-- (X (23 -1 0))

-- (X (|a| 0 NIL))

We tried 100 random trials, 100 (99 unique) of which satisfied the

hypotheses. Of these, none were counterexamples and 99 were witnesses.



Notice that in the original conjecture no type restriction is specified. Hence,
random instances for x are selected from the entire ACL2 universe, i.e., x is
of type all. In the modified conjecture, however, the framework automatically
extracts the type restriction that x is a true-list from the hypothesis and gen-
erates only examples of the desired type. Thus, we are guaranteed that no test
passes trivially, merely because the hypotheses were not satisfied; i.e., there are
no vacuous witnesses. The framework “understands” and syntactically extracts
two types of type restrictions:

1. Datatype hypotheses such as (loip x) where loi is a ’type’, i.e., it has a
corresponding enumerator function.

2. Equality hypotheses such as (equal x 42) which is the strongest type re-
striction possible, where a variable can take only one value (the case of a
singleton type).

Often type restrictions are more complex than datatype hypotheses; we consider
another classic example below. A triangle is a triple of positive numbers (recog-
nized by type predicate posp), representing its three sides, with each side less
than the sum of the other two sides.

(defdata triple (list pos pos pos))

(defun trianglep (v)

(and (triplep v)

(< (third v) (+ (first v) (second v)))

(< (first v) (+ (second v) (third v)))

(< (second v) (+ (first v) (third v)))))

The shape function determines whether its argument is an equilateral, isosceles,
scalene or illegal triangle.

(defun shape (v)

(if (trianglep v)

(cond ((equal (first v) (second v))

(if (equal (second v) (third v))

"equilateral"

"isosceles"))

((equal (second v) (third v)) "isosceles")

((equal (first v) (third v)) "isosceles")

(t "scalene"))

"error"))

Consider the conjecture that there are no isosceles triangles whose third side is
the product of the other two sides and is greater than 256.

(top-level-test? (implies (and (triplep x)

(trianglep x)

(> (third x) 256)

(= (third x)

(* (second x) (first x))))

(not (equal "isosceles" (shape x)))))

=⇒
Random testing with type expression alist ((X . TRIPLE))

We tried 10000 random trials, none of which satisfied the hypotheses.



Straightforward random testing (top-level-test?) fails miserably, because even
though we pick up that x is of type triple and randomly instantiate it, it is very
hard to satisfy the extra constraints on x. Consider the probability of finding a
counterexample to the conjecture by randomly generating values for the sides
of the triangle. Let us assume that we are using a uniform distribution over the
numbers [1..k]. For the case that c > 1 is equal to one of the other two (a and b),
the probability that we guess a counterexample (ignoring the condition c > 256)
is 2

k2 because one of a, b has to be equal to c and the other has to be equal to 1.
For the case that a = b, then c must be a square number and then there is only
one choice for a, b, namely

√
c, so the probability that we select a counterex-

ample is ≤ 1
k2 . Once we take the c > 256 constraint into account, we see that

the probability of generating a counterexample is less than 1
32,678 . A constraint

solver might help to find counterexamples, but this is an undecidable problem in
general. In the next section, we show how to make use of an interactive theorem
prover to tackle complex constraints like the above.

4 Improved Random Testing with Theorem Proving

In this section, we show how to use the full power of the ACL2 theorem prover to
simplify conjectures for better testing. The main idea is to let ACL2 use all of the
proof techniques at its disposal to simplify conjectures into subgoals, and then
to test those subgoals. The challenge is that ACL2 employs proof procedures
that often generate radically transformed subgoals. We describe some of these
issues and our solutions in this section.

First, let us step back and quickly review the organization of the ACL2
theorem prover. ACL2 keeps track of a pool of formulas to be proved. This pool
is initialized with the top-level conjecture. The pool is processed by a collection
of proof techniques, each of which uses the world, a database containing all the
current axioms, theorems, and definitions. A formula is extracted from the pool
and proof techniques are tried in order until one is applicable. If applicable,
the proof technique generates some (possibly empty) set of formulas that are
placed back into the pool. This organization is called the waterfall [3, 10, 15].
The original conjecture is proved when the waterfall fully drains the pool.

Space limitations do not allow us to describe fully the waterfall and its proof
techniques. Instead we will focus on three of the proof techniques, starting with
simplification. Simplification is quite complicated. It includes decision proce-
dures for propositional logic, equality, uninterpreted functions, and rational lin-
ear arithmetic. It uses type information and forward chaining rules to deduce a
context of derived facts. It uses conditional rewriting rules and metafunctions
(which can be thought of as user-provided, verified theorem provers). It uses if-
normalization to convert formulas to a set of equivalent (but simpler) formulas.
And it does much more.

The first issue is what subgoals to test. We do not test every subgoal, because
simplification may generate subgoals that can be further simplified. Instead, we
test checkpoints, subgoals that users of ACL2 are encouraged to examine when
their proof fails [10]. Only subgoals that cannot be further simplified are identi-
fied as checkpoints, and ACL2 has a mechanism that allows users to examine all



checkpoints. Testing at checkpoints makes sense because case analysis has been
applied, providing more specific guidance in locating counterexamples.

The next issue is that ACL2 proof procedures may remove and/or introduce
variables. For example, simplification can decide to replace a variable by an
expression it is equivalent to. The destructor-elimination proof technique may
remove and introduce variables at the same time, as happens when ACL2 tries to
prove the following conjecture, which is equivalent to the one from the previous
section.

(thm (implies (and (trianglep x)

(> (third x) 256)

(= (third x)

(* (second x) (first x))))

(not (equal "isosceles" (shape x)))))

We note that our integration of testing into ACL2s does not require new syntax
to be learned; users invoke thm as before. The prover opens up the definitions
of shape, trianglep and triplep and uses case analysis, reducing the above
“Goal” to three subgoals. After several simplification steps and a few rounds of
destructor elimination on one of these subgoals, we have the following subgoal,
for which testing easily yields a counterexample.

Subgoal 3’4’

(IMPLIES (AND (INTEGERP X1)

(< 0 X1)

(< 1 (* 2 X1))

(< 256 X1))

(EQUAL X1 1)).

Random testing "Subgoal 3’4’" with type expression alist ((X1 . POS))

We falsified the conjecture. Here are counterexamples:

-- (X (429 1 429))

...

Notice that the theorem prover simplified away two variables representing two
sides of the triangle, thus drastically simplifying the constraints. As we saw pre-
viously, for the original conjecture the probability of finding a counterexample
if we randomly assign positive integers to the three sides using a uniform dis-
tribution over [1..k] was ≤ 2

k2 . By using the theorem prover, we generated the
subgoal above, where the probability of finding a counterexample approaches 1
as k goes to∞. Apart from case-analysis, the primary simplification is due to the
presence of libraries of lemmas. In this respect interactive theorem proving has
a huge advantage over other tools routinely combined with testing, especially
considering the fact that most interactive theorem provers have good library
support.

Experience suggests that presenting a counterexample such as X1 = 429,
which falsifies a subgoal but contains a variable (X1) occurring in the subgoal
but not in the original goal, is less useful than a counterexample to the origi-
nal goal. In order to construct counterexamples for the original conjecture from



counterexamples for subgoals, we automate maintenance of a testing-history data
structure in ACL2. This structure associates each goal with its parent and main-
tains a mapping from variables appearing in its parent to expressions over the
variables appearing in the child subgoal. For example, after destructor elimi-
nation on the above example, we would record that X maps to (CONS X1 X2).
Sometimes a variable is completely elided away (consider the hypothesis (EQUAL
X X)), in which case we arbitrarily assign it the symbol ?, denoting a don’t-care.
This information allows us to propagate child goal counterexamples upward, to
obtain a complete counterexample to the top-level conjecture.2

Another issue is that since ACL2 is untyped, it may decide to throw away
datatype information in a hypothesis, say because it is implied in the current
context. While we can sometimes recover this information, we would like a guar-
antee of datatype monotonicity : subgoals do not wind up with less type informa-
tion their parents. To that end, we record in the testing-history data structure
another mapping from variables in the subgoal to a list of type restrictions that
the variable must satisfy at that subgoal and its descendants. The reason we
have a list is that we have several type restrictions on the same variable, arising
from either several datatype/equality hypotheses in the subgoal itself, type in-
formation from ancestor goals, or the theorem prover itself.3 The list may grow
as we move from a goal to its subgoals. For example, consider a goal in which
a variable may be an integer or a string. After case analysis we may wind up
with two goals: in one the variable is assumed to be a string; in the other it is
assumed to be an integer.

If we have several type restrictions on a variable, we would like to use all avail-
able information for the generation of random tests. For example, it is desirable
to determine automatically the minimal datatype that the variable satisfies. For
built-in datatypes like Nat and Integer, ACL2 already can determine this in-
formation, but for custom datatypes and for datatypes constructed using our
testing framework (defdata), there are several complications. First, a minimal
datatype need not exist, e.g., consider the case in which the variable satisfies two
datatypes, but there is no datatype corresponding to the intersection. Second,
custom datatypes make this an undecidable question, e.g., the proof that type
T1 corresponds to the intersection of types T2 and T3 can be arbitrarily hard to
establish. In order to deal with these issues we maintain a defdata subtype graph.
The vertices are the known data definitions and if there is an edge between T1

and T2 then T1 ⊆ T2 (we are abusing notation here by using Ti to denote the
subset of the ACL2 universe satisfying data definition Ti). This is a directed
graph. Notice that nothing stops us from having two data definitions that have
exactly the same elements. We allow users to add edges to this graph by proving
that one type subsumes another using defdata-subtype, for example as follows.

(defdata-subtype triple true-list)

2 For some proof procedures—generalization, fertilization and induction—it can be
hard to obtain a top-level counterexample, and we may fail to do so. Indeed, such
a counterexample does not exist when generalization changes a theorem into a non-
theorem.

3 ACL2 uses a type reasoning mechanism which can be customized by user input in
the form of rules.



We use the graph by first computing strongly connected components. Nodes
in the same component are provably equivalent. We then compute the transitive
closure of the resulting dag and can use this information to help select the
smallest type associated with a variable.

5 Improved Theorem Proving with Random Testing

In this section we describe briefly a novel use of testing to direct an automated
theorem prover. For more details about how this works, see the discussion of
backtrack hints in Section 6.

The ACL2 proof engine relies on proof processes to replace a given goal by a
list of goals, such that if each goal in that list is provable then the given goal is
provable. One such proof process is generalization, which replaces a goal G by
a single new goal, G′, such that G is an instance of G′. It is well-known in the
ACL2 community that generalization often produces non-theorems from goals
that are theorems. Thus, one will find numerous hints in the ACL2 regression
suite, placed manually by ACL2 users, that turn off generalization.

In particular, consider the following lemma from file books/workshops/2003/-

cowles-gamboa-van-baalen matrix/support/matrix.lisp in the ACL2 regression suite:

(defthm m-=-row-1-implies-equal-dot-2

(implies (and (m-=-row-1 M2 M3 n p)

(integerp p)

(integerp j)

(>= j 0)

(>= p j))

(equal (dot M1 M2 m n j)

(dot M1 M3 m n j)))

:hints

(("Goal" :do-not ’(generalize) ...)))

If the hint :do-not ’(generalize) is removed, then the proof fails because a
goal is generalized to one that is no longer valid.

We would like to retain the occasional win we get from generalization, but
with fewer defeats such as the one mentioned above. Random testing helps us by
triggering backtracking, as follows. We can arrange, as described in Section 6, for
testing to be triggered after a generalization. If testing finds a counterexample,
then the generalization is discarded, ACL2 backtracks to the state before the
generalization, and from there it proceeds without generalizing that particular
subgoal. In a proof attempt for the above example, testing prevented six attempts
at generalizing a valid goal to an invalid goal by finding a counterexample in each
case, and the proof succeeded.

The example above demonstrates that testing can assist the proof activity,
by allowing the gainful use of “dangerous” proof techniques (like generalization)
while avoiding some of their pitfalls.



6 ACL2 Enhancements

In this section we explain how we exploit the ACL2 hints mechanism to gen-
erate and evaluate tests, when appropriate. These ACL2 enhancements were
introduced with Version 3.6 (released August, 2009).

ACL2 has long had a computed hints mechanism [13] that allows proof hints
to be computed dynamically — that is, during a proof attempt — as a function
of information pertaining to the current goal. It may thus seem that such a
mechanism is well-suited to the integration of testing and proving, using testing
hints that may direct evaluation of the current goal in various environments.

In order to understand why computed hints were not quite sufficient for that
purpose, we must first understand the basic structure of an ACL2 proof attempt.
Recall the waterfall, discussed in Section 4. There is at any time a current goal,
which is initially the formula submitted for proof. This goal is handed to a
fixed sequence of proof processes, including a simplification process and, later in
the sequence, a generalization process. Each process can fail or succeed on the
current goal, G. The first one that succeeds replaces G by a list of goals, whose
provability implies the provability of G. If none of the processes applies, then
the goal is “pushed” for later proof by induction.

When a goal becomes the current goal, ACL2 searches through the available
hints until it finds an appropriate hint structure (if any) to apply to that goal.
This hint structure is applied at the “top” of the waterfall, that is, before the
first process is attempted on the current goal — not as each new proof process
is attempted on that goal.

There are two problems with this approach, which we describe in turn be-
low. First, in order to use theorem proving for improved testing as described in
Section 4, we need to apply not only the testing hints, but we also need to apply
the user’s original hints so that the intended proof is not adversely affected by
the testing hints. Yet, as described above, at most one hint structure is chosen.
Second, in order to use testing for improved theorem proving as described in
Section 5, we use testing hints to backtrack, so we want to be able to apply hints
after a goal has been processed to create proposed child goals. Yet, as described
above, hints are processed at the top of the waterfall, at which time the resulting
children goals have not yet been computed.

The first problem, to allow the application of a user’s hint together with
testing hints, is conceivably solvable by using computed hints to merge hints;
but this would be awkward. Instead, this work has inspired a new, very general
utility: a new hint mechanism for specifying easily how to modify hints selected
for goals. These override-hints [14] are expressions to evaluate, each of which can
mention the variable HINT-SETTINGS, which is bound initially to reflect the hint
structure selected for the goal (or nil if none is found). Then each override-hint
is evaluated in turn, where the result of each is the value of HINT-SETTINGS used
for evaluation of the next override-hint. The final such result is supplied as the
hint to use for the goal. A utility add-override-hints allows the user to add
override-hints to the global environment.

We turn now to the second problem: how to support backtracking as used
in Section 5, in which the ACL2 hint mechanism can discard a harmful attempt
at generalization. Such a capability requires knowing that generalization is the



applicable proof process, as well as knowing the goal resulting from the gener-
alization. The hint mechanism applied at the top of the waterfall would be at
best awkward to use; one would have to figure out how to invoke the waterfall
explicitly to predict what will happen, and then generate a hint based on that
result.

Instead, this work has inspired the addition to ACL2 of a backtrack hint
mechanism [11]. A backtrack hint is applied after a proof process has been ap-
plied to a goal, G. The hint’s value is an expression that can refer to variables
clause-list and processor. That expression is then evaluated in an environ-
ment in which these two variables are bound respectively to the list of resulting
goals and the proof process that has just been applied. The evaluation result is
either the special value nil, indicating that the backtrack hint is to be ignored,
or an object specifying the hint structure to be applied to G. In the latter case,
the clause list resulting from the proof process is discarded, and G is sent back
through the waterfall with the new hint structure.

Let us see how backtrack hints support improved theorem proving as de-
scribed in Section 5. Consider

(add-default-hints ’((test-gen-checkpoint)))

which indicates that the arity-0 function test-gen-checkpoint is to be applied
to a goal in order to generate a hint structure. Evaluation of the expression
(test-gen-checkpoint), in turn, generates a backtrack hint. The code below
specifies that this backtrack hint should be applied to every goal, not just the
current goal, by using :computed-hint-replacement t. That backtrack hint
says that if the proof process that applies to the goal is the generalization process,
then ACL2 should run our testing apparatus to look for a counterexample. If
there is a counterexample (i.e., if res is true), then the backtrack hint generates
a hint structure specifying that the goal should be re-tried with generalization
turned off.

(defun test-gen-checkpoint ()

‘(:computed-hint-replacement t

:backtrack

(cond

((eq processor ’generalize-clause)

(er-let*

((res (test-clause (car clause-list) state)))

(value (cond (res ’(:do-not ’(generalize)))

(t nil)))))

(t (value nil)))))

Finally, we remark that override-hints are useful in combination with back-
track hints: instead of the add-default-hints form described above, an override-
hint can be used with a new version of test-gen-checkpoint. This new version
extends the existing hint structure with a suitable backtrack hint, where that
backtrack hint also extends the existing hint structure (so that if the generaliza-
tion is discarded, then the user’s hints are still respected).

(add-override-hints

’((test-gen-checkpoint hint-settings)))



7 Experiences

We describe two experiences using the counterexample generation capabilities
of ACL2s. One involves using counterexamples to teach students how to reason
about their programs and the other involves an example from an expert.

For several years, we have been teaching freshman students at Northeastern
University how to reason about programs. We have used ACL2s and it has been
an invaluable teaching aid. One place where students often struggle is in writing
specifications. They sometimes make logical and conceptual mistakes, and they
often omit required hypotheses. Therefore, they often try to prove conjectures
that are false. In large part, the motivation for this work was to help students by
providing them with counterexamples. In this, we have succeeded because our
testing framework tends to find counterexamples easily. The counterexamples
allow students to see what is wrong with their conjectures, in terms they readily
understand. Without the counterexamples we generate, students are left trying
to determine whether they need more lemmas or whether their conjectures are
false, a skill that takes time to develop. From a usability point of view, we note
that our testing framework has the nice property that it does not incur any
cognitive load on the user. Students do not have to enable testing; they do not
have to give it hints; they do not have to invoke it. Testing is just an invisible,
natural part of the theorem proving process.

Our counterexample generation can also be fruitfully used by experts. Con-
sider the following conjecture:

(thm (implies (and (real/rationalp a)

(real/rationalp b)

(real/rationalp c)

(< 0 a)

(< 0 b)

(< 0 c)

(<= (expt a 2) (* b (+ c 1)))

(<= b (* 4 c)))

(< (expt (- a 1) 2) (* b c))))

An ACL2 expert who uses ACL2 to reason about industrial designs asked
the ACL2 mailing list for help in proving the above conjecture. He provided
an informal proof and mentioned that after a few hours could not see how to
construct a proof in ACL2. ACL2s immediately comes up with a counterexample.

Random testing ‘‘Subgoal 1" with type expression alist

((A . RATIONAL) (B . RATIONAL) (C . RATIONAL))

We falsified the conjecture. Here are counterexamples:

-- (A 1/7), (B 2/11) and (C 2/9)

...

We indicated that the conjecture was not true, and the expert quickly mod-
ified one of the hypotheses, namely that a ≥ 1. The modified conjecture was
then automatically proven by ACL2s (where again the automatically included
libraries for reasoning about arithmetic prevailed). In fact, with a little bit of



trial and error, we were able to generalize the theorem by removing hypotheses
(< 0 b) and (< 0 c). Using binary search we also replaced (<= 1 a) with (<

3/4 a). We know that the bound is tight because (<= 3/4 a) leads to a coun-
terexample. We also know no further hypotheses can be removed because doing
so leads to our framework generating counterexamples.

The moral of the story here is that if the expert had been using ACL2s, he
would have immediately been presented with a counterexample. He would have
then fixed the hypothesis and would have been rewarded with a QED.

8 Conclusions and Future Work

Our work integrates random testing seamlessly with theorem proving, resulting
in a system with powerful, automatic testing capabilities and more guidance in
proof discovery. We identify four contributions. First, we show how to use the
power of an interactive theorem prover for better testing. Second, we show how
to use testing to make interactive theorem proving more powerful and automatic.
Our third contribution is a set of enhancements to the ACL2 theorem prover’s
hint mechanism that were developed to support this work and that we expect will
be of interest to the wider interactive theorem proving community. Our fourth
contribution is the implementation of the above ideas in the ACL2 Sedan, a
freely available theorem prover which has been used to teach several hundred
freshman students how to reason about programs.

For future work, we plan to explore more powerful algorithms for generating
counterexamples. We also plan to explore support for intersection types and more
powerful methods for determining where in the partial order of types user defined
datatypes belong, along with automatic generation of rules to relate different
such types. (J Moore [private communication] is exploring similar support and
methods, which may lead to collaborative solutions.) Finally, we plan to explore
the integration of constraint solving and decision procedures into our framework,
for even better counterexample generation.
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