Lecture 7 - Double integrals - 7/15/2014 - Interphase 2014 Calc 3

20. Double integrals (conceptually)
a. The double integral $\iint_{R} f(x, y) d A$ gives the volume under the surface $z=f(x, y)$ over the 2 d region R.
b. The double integral as a Riemann sum:

$$
\iint_{R} f(x, y) d A \approx \sum f(x, y) \Delta A
$$

where the sum is over all small boxes of area ΔA that are part of R.
c. To write down a double integral for a quantity, consider a small box of area ΔA located at (x, y). It will contribute $f(x, y) \Delta A$ to the quantity of interest. The quantity is then given by the double integral $\iint_{R} f(x, y) d A$.
21. Applications of double integrals
a. The area of a 2 d region R is $\iint_{R} d A$.
b. The volume under a surface $f(x, y)$ over the 2 d region R is $\iint_{R} f(x, y) d A$.
c. The mass of a 2d plate with area density $\rho(x, y)$ is $M=\iint_{R} \rho(x, y) d A$.
d. The moment of inertia of a 2 d plate with area density $\rho(x, y)$ about a given axis is $I=\iint_{R} \rho(x, y) d^{2}(x, y) d A$, where $d(x, y)$ is the distance from the point (x, y) to the axis of rotation.
e. The coordinates of the center of mass of a 2 d plate with area density $\rho(x, y)$ is

$$
\bar{x}=\frac{\iint_{R} x \rho(x, y) d A}{\iint_{R} \rho(x, y) d A} \text { and } \bar{y}=\frac{\iint_{R} y \rho(x, y) d A}{\iint_{R} \rho(x, y) d A}
$$

f. The average value of a function $f(x, y)$ over the region R is

$$
\bar{f}=\frac{\iint_{R} f(x, y) d A}{\iint_{R} d A}
$$

