Lecture 5 - Gradient, directional derivatives, chain rule 7/11/2014 - Interphase 2014 Calc 3

17. Gradient and directional derivative
a. The gradient of $f(x, y)$ at (x, y) is $\overrightarrow{\nabla f}(x, y)=\left\langle\partial_{x} f(x, y), \partial_{y} f(x, y)\right\rangle$.

The gradient of $f(x, y, z)$ at (x, y, z) is $\overrightarrow{\nabla f}(x, y, z)=\left\langle\partial_{x} f(x, y, z), \partial_{y} f(x, y, z), \partial_{z} f(x, y, z)\right\rangle$.
b. First order approximation: $f(\vec{x}+\overrightarrow{\Delta x})=f(\vec{x})+\overrightarrow{\nabla f}(\vec{x}) \cdot \overrightarrow{\Delta x}$
c. The directional derivative of $f(\vec{x})$ in the direction \vec{u} (with $|\vec{u}|=1$) at \vec{x} is

$$
D_{\vec{u}} f(\vec{x})=\lim _{\epsilon \rightarrow 0} \frac{f(\vec{x}+\epsilon \vec{u})-f(\vec{x})}{\epsilon} .
$$

Directional derivative is a scalar.
d. Relation of directional derivative to gradient:

$$
D_{\vec{u}} f(\vec{x})=\overrightarrow{\nabla f} \cdot \vec{u} \text { when }|\vec{u}|=1
$$

e. The gradient of a function at a point is perpendicular to the level set containing that point.

The gradient of a function at a point is a vector in the direction of steepest ascent of that function at that point.

The gradient of a function at a point is a vector with magnitude equal to the directional derivative in the direction of steepest ascent.
f. The normal vector to a surface can be found by

- viewing the surface as a level set of a function of three variables
\circ taking the gradient of that function

18. Chain rule and total derivative
a. Multivariable chain rule:

$$
\partial_{a} f(x(a, b), y(a, b))=\partial_{x} f \partial_{a} x+\partial_{y} f \partial_{a} y
$$

b. Total derivative:

$$
\frac{d}{d t} f(t, x(t), y(t), z(t))=\partial_{t} f+\partial_{x} f \frac{d x}{d t}+\partial_{y} f \frac{d y}{d t}+\partial_{z} f \frac{d z}{d t}
$$

