Lecture 2 - Lines, planes, determinants, cross products 7/2/2014 - Interphase 2014 Calc 3

11. Lines and planes
a. In 2d, any line can be written $\mathbf{n} \cdot \mathbf{x}=b$ for some b. Here \mathbf{n} is a normal vector to the line.
b. In 2d, the line going through \mathbf{x}_{0} with normal vector \mathbf{n} is given by $\mathbf{n} \cdot \mathbf{x}=\mathbf{n} \cdot \mathbf{x}_{0}$.

c. In 3d, to specify a plane, we need a point $\mathbf{x}_{\mathbf{0}}$ and a normal vector \mathbf{n}.

d. In 3d, any plane can be written $\mathbf{n} \cdot \mathbf{x}=b$ for some b. Here \mathbf{n} is a normal vector the the plane.
e. In 3d, the plane going through \mathbf{x}_{0} with normal vector \mathbf{n} is given by $\mathbf{n} \cdot \mathbf{x}=\mathbf{n} \cdot \mathbf{x}_{0}$.
12. Cross product
a. The determinant of a 2×2 matrix is

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

b. The cross product of $\mathbf{x}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ and $\mathbf{y}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ is

$$
\mathbf{x} \times \mathbf{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right| \mathbf{k}
$$

c. The cross product of two three-dimensional vectors is a three-dimensional vector perpendicular to both.

d. The right hand rule helps qualitatively determine the direction of a cross product:

If you align the fingers of your right hand with the vector \mathbf{a} and you can curl them directly to align with \mathbf{b}, then your right thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.
e. If \mathbf{x} and \mathbf{y} are vectors and θ is the angle between them, then the length of their cross product is

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin (\theta)
$$

f. Two vectors have zero cross product if they are multiples of each other.
g. The area of the parallelogram spanned by the vectors \mathbf{x} and \mathbf{y} is $|\mathbf{x} \times \mathbf{y}|$.

h. Algebra of cross products:

$$
\begin{aligned}
\mathbf{a} \times \mathbf{a} & =0 \\
\mathbf{a} \times \mathbf{b} & =-\mathbf{b} \times \mathbf{a} \\
\mathbf{a} \times(\mathbf{b}+\mathbf{c}) & =\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \\
(c \mathbf{a}) \times \mathbf{b} & =\mathbf{a} \times(c \mathbf{b})=c(\mathbf{a} \times \mathbf{b})
\end{aligned}
$$

