Lecture 11 - Vector fields, line integrals, conservative vector fields - 7/28/2014 — Interphase 2014 Calc 3

29. Vector fields

a. A vector field is a vector-valued function: $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$.

30. Line integrals

a. $\int_C \mathbf{F} \cdot d\mathbf{r}$ is the line integral of **F** over the curve *C*.

b. A line integral is approximated by a Riemann sum

$$\int_C \mathbf{F} \cdot d\mathbf{r} \approx \sum \mathbf{F} \cdot \Delta \mathbf{r},$$

where the curve is broken up into many tiny straight segments.

c. The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ represents the work done by the force field \mathbf{F} on an object traveling along path C.

d. The work done by \mathbf{F} is also equal to the integral with respect to arc length of the tangential component of the force:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot \mathbf{T} ds.$$

Here, \mathbf{T} is the unit tangent vector to the curve and s is arc length.

e. If the curve *C* is parameterized by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $a \le t \le b$,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(x(t), y(t)) \cdot \frac{d\mathbf{r}(t)}{dt} dt.$$

31. Conservative vector fields

a. The vector field $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is *conservative* if $\mathbf{F}(x, y) = \nabla \phi(x, y)$ for some function $\phi(x, y)$.

b. The function ϕ is called a *potential function*. It is defined up to an additive constant.

c. **F** is conservative if and only if $\partial_y P = \partial_x Q$.

d. To find the potential function ϕ from **F**, integrate each component of **F** and combine.