- Review of Series
- Sequence: a list of numbers in a particular order
- Infinite sequence: an infinite list of numbers in a particular order

Example:

$$
\left.\begin{array}{rl}
\left\{a_{n}\right\}= & \left\{a_{1}, a_{2}, a_{3}, a_{4} \ldots\right\} \\
\text { 1 }
\end{array}\right\}
$$

- Series: the sum of all the terms of a sequence
- Infinite series: the sum of the terms in an infinite sequence
- Example:

$$
\text { end at } \underset{\substack{\text { infinite } \\ \rightarrow \text { term }}}{\infty} \sum_{\substack{n=1 \\ \text { start at } \\ \text { stern }}}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

- Specific Types of Series
- Geometric Series: a series in which each term is obtained from the previous one by multiplying it by the common ratio r

$$
\begin{gathered}
a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}=\sum_{n=1}^{\infty} a r^{n-1}(a \neq 0) \\
\text { common ratio: } r
\end{gathered}
$$

- Alternating Series: a series whose terms are alternately positive and negative

$$
\text { - Example: } 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}
$$

- Power Series:

$$
1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n} \text { not } n=1!!!
$$

- P-Series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text {, where } p \geq 0
$$

Example:

$$
\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{3}} \longleftarrow p=3
$$

When $p=1$: Harmonic Series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots
$$

- Convergence and Divergence
- Convergence: approaches a definite, real number as you go off to infinity

$$
S_{n}=\sum_{n=1}^{\infty} a_{n} \rightarrow \text { Converges if } \lim _{n \rightarrow \infty} S_{n}=a \text { real number }
$$

- Divergence: doesn't approach a definite, real number as you go off to infinity
- How to Tell if a Series Converges or Diverges: Using Convergence Tests
- We can use convergence tests to analyze series' end behavior
- Test for Divergence (looking at limits)
- If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$. If $\lim _{n \rightarrow \infty} a_{n}$ doesn't exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1} a_{n}$ is divergent
- Example:
$\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ Does this series converge or diverge?

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{5 n^{2}+4}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{5 n^{2}+4} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{5+\frac{4}{n^{2}}}\right)=\frac{1}{5} \neq 0
$$

\Rightarrow Diverges by the Test for Divergence

- The Integral Test
- Suppose f is a continuous, positive, decreasing function on the interval $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{2 n} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.

Aka:
(a) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent
(b) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent

* Note: When we use the Integral Test it's not necessary to start the series or integral at $n=1$. Example:

$$
\sum_{n=4}^{\infty} \frac{1}{(n-3)^{2}} \rightarrow \int_{4}^{\infty} \frac{1}{(x-3)^{12}} d x
$$

- Example:
$\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ Does this series converge or diverge?

$$
\text { let } f(x)=\frac{\ln (x)}{x}
$$

(1) Check to see if $f(x)$ is ultimately decreasing

$$
\begin{aligned}
f(x) & =\frac{\ln (x)}{x} \\
\Rightarrow f^{\prime}(x) & =\frac{x\left(\frac{1}{x}\right)-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

$f^{\prime}(x)<0$ when $\ln (x)>1 \Rightarrow f(x)$ is decreasing
\Rightarrow use the Integral Test
(2) Apply Integral Test

$$
\begin{aligned}
& \int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{\ln (x)}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln (x)}{x} d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{(\ln (x))^{2}}{2}\right]_{1}^{t}=\lim _{t \rightarrow \infty} \frac{(\ln (t))^{2}}{2}=\infty
\end{aligned}
$$

(3) Analyze Results
$\int_{1}^{\infty} f(x) d x=\infty \Rightarrow$ The improper integral is divergent
\Rightarrow By the Integral Test, $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ diverges

- The Comparison Test
- Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms
- If $\sum b_{n}$ is convergent and $a_{n} \leqslant b_{n}$ for large enough n, then $\sum a_{n}$ is also convergent
- If $\sum b_{n}$ is divergent and $\partial_{n} \geqslant b_{n}$ for large enough n, then $\sum a_{n}$ is also divergent
- Example:

$$
\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}
$$

Given that $\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, does this series converge or diverge?
(1) Recognize the relationship between the two series

$$
\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}<\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

(because the left side has a bigger denominator)
(2) Apply the Comparison Test

Since $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}<\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
and $\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent,
then $\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}$ converges by the Comparison Test

- Specific Case: P-Series Convergence
- P-Series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text {, where } p \geq 0
$$

- For the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$
- Example:
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ Does this series converge or diverge?

$$
\begin{gathered}
p=2 \Rightarrow p>1 \\
\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { is convergent }
\end{gathered}
$$

- Specific Case: Geometric Series Convergence
- Geometric Series:

$$
a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}=\sum_{n=1}^{\infty} a r^{n-1}(a \neq 0)
$$

common ratio: r

- A geometric series converges if $|r|<\mid$ and diverges if $|r| \geq 1$
- Example:

$$
\begin{aligned}
& \text { Example: } \sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n-1} \text { Does this series converge or diverge? } \\
& \qquad|r|=\frac{1}{3} \Rightarrow|r|<1 \\
& \Rightarrow \sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n-1} \text { converges }
\end{aligned}
$$

- Related Case: Exponential Convergence
- Form: $\sum_{n=1}^{\infty} e^{k n}$
- If $k<0$ then the series converges
- If $k \geqslant 0$ then the series diverges

Example:
$\sum_{n=1}^{\infty} e^{5 n}$ Does this series converge or diverge?

$$
\begin{aligned}
& k=5 \Rightarrow k \geq 0 \\
\Rightarrow & \sum_{n=1}^{\infty} e^{5 n} \text { diverges }
\end{aligned}
$$

- The Ratio Test
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent
- If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum_{n=1}^{\infty} a_{n}$
- Example:

$$
\left.\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}} \text { Does this series converge or diverge? } \\
& a_{n}=\frac{(-1)^{n} n^{3}}{3^{n}} \\
& a_{n+1}=\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}} \\
& \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} n^{3}}{3^{n}}\right| \frac{(n+1)^{3}}{3^{n+1}} \\
& \frac{n^{3}}{3^{n}}
\end{aligned} \right\rvert\,
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left|\frac{\partial n+1}{2 n}\right|<1$, so $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ is convergent by the Ratio Test

- Taylor Series

- Basic idea: rewrite any function in terms of a polynomial
- Form:

$$
\begin{aligned}
f(x)= & \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+\frac{f^{\prime}(a)(x-a)}{1!}+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\cdots \\
& \text { not } n=1!!!
\end{aligned}
$$

* Taylor series of a function of f centered at a * a can be any real number

Special Case: Maclaurin Series

- Taylor series centered at a=0
- Form:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots
$$

- Common Maclaurin Series Expansions
- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$
- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
- $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
- $\cos x=\sum_{n=(0)}^{\infty}(-1)^{n} \frac{x^{2 n}}{2 n!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
- Applications of Taylor Series
- Linear approximations of functions
- Higher order approximations
- Make evaluating limits and integrals easier
- Example: Derive the first 3 terms of MacLaurin Series of $f(x)=e^{x}$ and use it to approximate $f(0.5)$
(1) Find Taylor expansion centered at $a=0$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots \\
& f(x)=e^{x} \rightarrow f(0)=1 \\
& f^{\prime}(x)=e^{x} \rightarrow f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=e^{x} \rightarrow f^{\prime \prime}(0)=1
\end{aligned}
$$

$$
\Rightarrow f(x)=e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}
$$

(2) Use the Maclaurin series terms to find an approximation

$$
\begin{aligned}
& f(0.5)=? \\
& f(x)=e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!} \\
& \Rightarrow f(0.5)=e^{0.5}=1+\frac{0.5}{1!}+\frac{(0.5)^{2}}{2!}=1+\frac{1}{2}+\frac{1}{8}=\frac{13}{8}
\end{aligned}
$$

Example:
Find $\lim _{x \rightarrow 0}\left(\frac{1-f(x)}{x^{2}}\right)$, where $f(x)=\cos \left(x^{2}\right)$
(1) Recall a Taylor series expansion of a similar form

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

(2) Use this known expansion to find the desired expansion

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\Rightarrow \cos x^{2} & =1-\frac{\left(x^{2}\right)^{2}}{2!}+\frac{\left(x^{2}\right)^{4}}{4!}-\frac{\left(x^{2}\right)^{6}}{6!}+\cdots \\
& =1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\cdots
\end{aligned}
$$

(3) Use the expansion to evaluate the limit

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{1-f(x)}{x^{2}}\right)=\lim _{x \rightarrow 0}\left[\frac{1-\left(1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\cdots\right)}{x^{2}}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{\frac{x^{4}}{2!}-\frac{x^{8}}{4!}+\frac{x^{12}}{6!}-\cdots}{x^{2}}\right]=\lim _{x \rightarrow 0}\left[\frac{x^{2}}{2!}-\frac{x^{6}}{4!}+\frac{x^{10}}{6!}-\cdots\right]=0
\end{aligned}
$$

