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Imaginginverseproblems
X image 113 Examples
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f forward model Rn01km f subsetof
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inetworkapproacheswteen
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choose architecture8 fare IRMo.IR

Training
Collectcreate D Xiii
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Inversion
Given y compute X f y

Generativeling
Choose architecture go.rsRksIRn
Training

Collect D Xi
Learn Q 5 t go.cz for Z NIO.IR

approximates densityfrom
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Inversion3
Given y Find 2 St Ffgorzi _y



Unlearned Neural Network Priors

Choose architecture for 3IRK IRN
Training NONE
Inversion3 Fix 2 c IRK Given Y

find 0 St fffo.czDay

comparison of gen models and unlearnedpriors

z tIg x Dfyn
Gen Models

0 learned fromdata general to all images
2 fit to measurements specific to an image

Unlearned Priors
2 fixed general to all images

fit to measurements specific to an image

Can a neural network w no training be a goodprior

Yes The architecture has bias toward some
imagessignals over others

Deep Image Prior Ulyanov et al

DEEP Decoder HeckelandHand

DeepGeometric Prior Williams et al

They can also aid learned priors

Image Adaptive GAN Hussein Et al
Latent ConvolutionalModels Athar Et al



DeepImage Prior

An untrained net whose weights can be
optimized to fit measurements

Encoder decoder architecture U net

DIP can represent all images but has high impedance to noise
and low impedance to signal

Illustrations Given a single image X main llfo.CZ XII

can fit noise

but doesn't until after the
signal is fit



DIP with Early stopping can denoise

TI Can fit any
noisy image

but fits a
clean Version
first

Geometric Picture

Noisy image

Random
initialization
image



DIP can also do Superresolution some inpainting

Superresolution

Original Bioubic Upsampling DIP
4k 4X

In painting

Masked image DIP

Q3 Could DIP inpaint these images well
Q 3 For compressed sensing would DIP need Early stopping



DEep er

Architectural simplification of DIP

only a decoder

Can be Underparameterized f NN weights C pixels
Concise image representation
Doesn't need Early stopping
Admits some theory can't fit noised

Overparameterized Variants can be used for
Compressed Sensing

Deep Decoder Architecture
3output
channels

k hi
channels

sittifff

Optimized over

Typically channels is kept constant Bin Ch relu YiBoCi
chalnnetwise fixed
normalization



Parameters of deep decoders Co Cai ca v noprarmaamligation

w

kik kx3
IR IR

Roughly Ed params

Deep Decoder Can Concisely represent images

Given image X Mian Il forzi XH

Underparameterized Deep Decoder can denoise
without Early stopping



Theory 3 Underparameterized deep decoder
cant fit noise

Claim Consider a 1 layer DD Fix BoC IR VoelR
G Co.ci rElufUoBoColc

I 1
fixed
arbitrary

Let M N O o In

If tilnogno fjz than with high probability

Engine Graal 71121117112ft sohu.no

Rough Rationale This DD has K2params
A k dim subspace of IR will havethe
fraction of the noise power

Proof idea3 The range of G lives in Union of
K2

at most no different K dim subspaces



DEEp rior

Given noisy points to along

a surface in 1123 Estimate thesurface i

A local patch can be represented as
eraorrao ok

Vi Xi
Estimate Surface

Choose some Vi C 0113 0,1

Find best matching Vi Xi
by minimizing Earth Mover Distance

Represent 0 by a fully connected RELU net

Vj G drew Ed relief retro w I

Solve W Q matrices

Moin E 110mi o Xi 112

During optimization overall shape gets fit first
then Eventually the noise So Early stop

Can also apply to images 3
Image X can be viewed as a map 50,0 0,0 1112
Estimate this map by a net position 3h9m41s



Whatistheprinhearned net

Underparameterized Deep Decoder
for Z Q for fixed Z is a low dim

manifold in Rn
The prior is membership in this set
can only fit low complexity signals
don't have a characterization

Overparameterized Priors
can fit anything
prefers low complexity signals
piecewise smooth small Lipschitz const
gradient descent traverses these signals first

Where is smoothness locality with images enforced

DIP Upsampling convolutions sometimes input

DD Upsampling

DGP Continuous function applied to
continuous input



Bringingidunlearnednetotearnednets
I A GAN USE a trained GAN as a warm

start for a DIP

2 7X optimize 2 Q in an image specific way
at inversion

Min Il f Goren y112
Z O

Latent Convolutional Models
USE DIP as image specific prior for high
dimensional latent representations for a trainedgenerator


