Unlearned Neural Networks as Image Priors for Inverse Problems

Imaging inverse problems

$$X - image IR^n$$

 $y - observation IR^m$
 $F - Forward model IR^n \rightarrow IR^m$
 $\eta - noise$
 $y = F(x) + \eta$
Givens F, y
Finds X

Examples

$$F = I - denoising$$

 $F = subset of - in painting$
 $F = rondom A \in \mathbb{R}^{mxn} - compressed$
 $W/M \leq n$

Neural network approaches we've seen

 $\frac{\text{End} - \text{to} - \text{end}}{\text{Choose architecture }} \frac{\text{F}_{\theta} \circ \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}}{\text{Training}} \\ \frac{\text{Training}}{\text{Collect/create }} D = \left\{ (X_{i}, Y_{i}) \right\} \\ \text{Learn } \theta \text{ s.t. } X_{i} \approx f_{\theta}(Y_{i}) \\ \text{Inversion} \\ \text{Given } Y, \text{ compute } X = f_{\theta}(Y) \\ \end{array}$

Inversion 8

Given y, Find z st $F(g_{\theta}(z)) \approx y$

Unlearned Neural Network Priors

Choose architecture $f_{\theta} : \mathbb{R}^{k} \to \mathbb{R}^{n}$ Training: None Inversion: Fix $Z \in \mathbb{R}^{k}$. Given Y_{j} find θ s.t. $F(f_{\theta}(z)) \approx Y$

Comparison of gen. models and unlearned priors

$$\begin{array}{c} Z \rightarrow \overbrace{f \circ g}^{NN} \\ f \circ g \\ \uparrow \\ \Theta \end{array} \\ X \rightarrow \overbrace{F}_{\gamma} \\ \gamma \\ \gamma \end{array}$$

Gen. Models

0- learned from data , general to all images Z-fit to measurements, specific to an image

Unlearned Priors

Z - fixed, general to all images O - fit to measurements, specific to an image

Yes! The architecture has bias toward some images/signals over others

Deep	Im <i>age</i> Pr	ior	Ulyanov	et	al.
Deep	Decoder		Heckel	and	Hand
Deep	Geometric	Príor	Williams	et i	al.

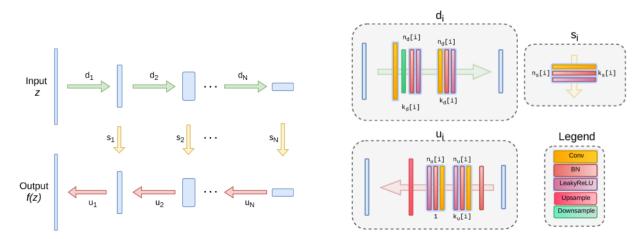
They can also aid learned priors

Image	Adaptive	GAN	Hussein et al.
Latent	Convolut	ional Models	Athar et al.

Deep Image Prior

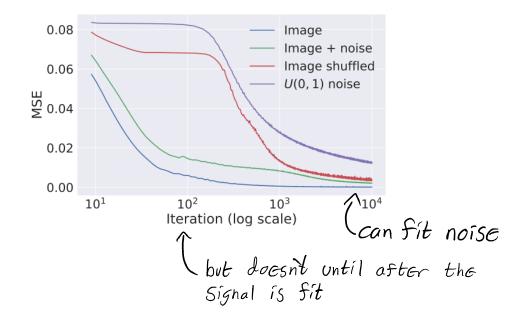
An untrained net whose weights can be optimized to fit measurements

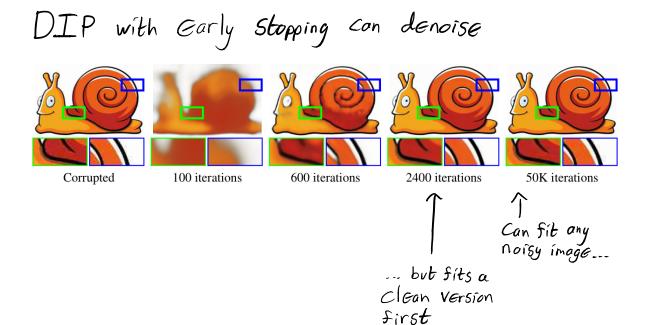
Encoder - decoder architecture (U-net)



DIP con represent all images, but has high impedence to noise and low impedance to signal

Illustration: Given a single image X, min $\|f_{\theta}(z) - X\|$





Geometric Picture

Noisy image Cleon, natural images Random initialization inage

DIP can also do superresolution, some inpainting

Superresolution



Inpainbing

Masked image

DIP

Q: Could DIP inpaint these images well? Q: For compressed sensing, would DIP need early stopping?

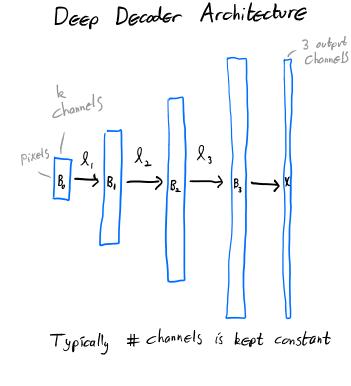
Deep Vecoder

Architectural simplification of DIP - only a decoder

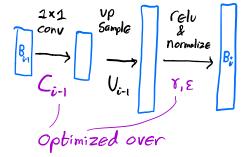
Can be Underparameterized (#NN weights < # pixels)

- Concise image representation
- Doesn't need early stopping
- Admits some theory (can't fit noise)

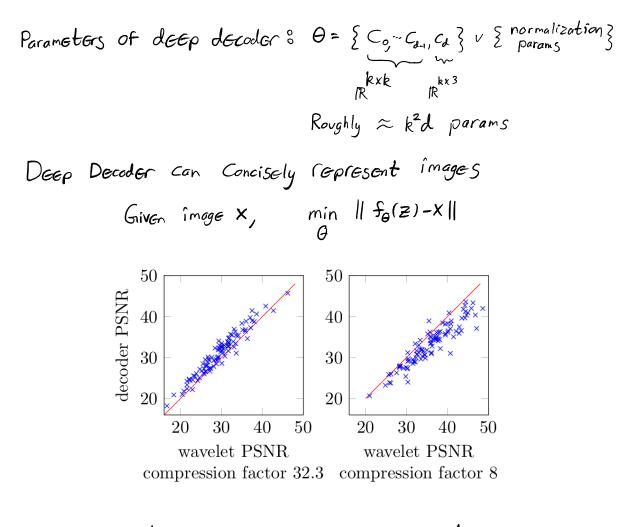
Overparameterized Variants can be used for compressed sensing



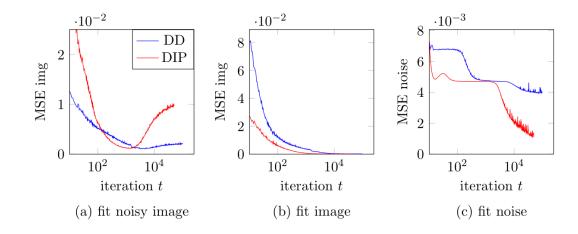
Xi°



 $B_{i+1} = Ch(relu(U_iB_iC_i))$ fixed Channelwise normalization



Underparameterized Deep Decoder can denoise without Early stopping



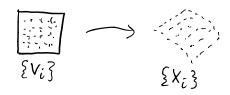
Theory & Underparameterized deep decoder
Cant fit noise
Claim & Consider a 1-layer DD. Fix
$$B_0 \in \mathbb{R}^{n_0 \times k}$$
, $V_0 \in \mathbb{R}^{n \times n_0}$
 $G_1(C_0, C_1) = \Gamma \in Iu(U_0, B_0, C_0)C_1$
 $f_1 \times ed_1$
Let $\eta \sim \mathcal{N}(O_1 \sigma^2 \mathbb{I}_n)$
 $\mathbb{I}_{f} \quad \frac{k^2 \log n_0}{n} \leq \frac{1}{32}$, then with high probability
min $||G_1(C_0, C_1) - \eta||^2 \ge ||\eta||^2 (|-20 \frac{k^2 \log n_0}{n})$

Rough Rationale This DD has
$$\approx k^2$$
 params.
A k^2 -dim subspace of \mathbb{R}^n will have $\frac{k^2}{n}$
Fraction of the noise power.
Proof idea: The range of G lives in union of
at most $N_0^{k^2}$ different k^2 -dim subspaces.

Given noisy points {X; } along a surface in IR³, estimate the surface

A local patch can be represented as $\phi : [o_1(] \times [o_1(] \rightarrow \mathbb{R}^3)$

Estimate this map by a net



Estimate Surface: - Choose some {V; 3 = [0,1]×[0,1] - Find best matching {Vi} + {Xi} by minimizing Earth Mover Distance - Represent Ø by a fully connected Relu-net $\phi(V; \Theta) = \Theta_{d} \operatorname{relu}(\Theta_{d-1} \operatorname{relu}(\cdots \operatorname{relu}(\Theta, v) \cdots))$ W/ Q; mabrices - Solve $\min_{\substack{\theta \in \mathcal{I}}} \sum_{i} \|\phi(v_{i};\theta) - X_{i}\|^{2}$ During optimization, overall shape gets fit first, then eventually the noise so, early stop. Can also apply to images: Image X can be viewed as a map $[0,1] \times [0,1] \rightarrow \mathbb{R}^3$ Positich Game What is the prior w/ an unlearned net?

Underparameterized Deep Decoder
-
$$\{f_{\theta}(z) \mid \Theta\}$$
 for fixed z is a low-dim
manifold in IR^n .
- The prior is membership in this set.
- con only fit low-complexity signals
(doint have a characterization)

Overparameterized Priors - Can fit anything - "prefers" low complexity signals · piecewise smooth? small Lipschitz const? · grodient descent traverses these signals first

Where is Smoothness/locality with images enforced? DIP - Upsampling, convolutions, sometimes input DD - Upsampling DGP - continuous function applied to continuous input

Bringing ideas of Unlearned nets to learned nets
• IAGAN - Use a trained GAN as a worm
start for a DIP

$$Z = [G \rightarrow X - optimize Z & 0 in an image specific way$$

at inversion.
 $\tilde{J} = [G \rightarrow X - optimize Z & 0 in an image specific way$
 $T = [G \rightarrow X - optimize Z & 0 in an image specific way$
 $T = [G \rightarrow X - optimize Z & 0 in an image specific way at inversion.]$