



Gradient Descent and Stochastic Gradient Descent
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What are alternatives to gradient descent? 
 
In linear regression: could solve normal equations.  There happens to be an analytical formula, 
solve it.  Closed form formula



Derivative free method  - Zeroth order methods - We have access to evaluations of the 
objective f(x).  I can not call. Grad f(x) 



Second order methods - We have access to f(x), grad f(x) and Hessian f(x)
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You have access to curvature information - function is approximately quadratic, so your next 
iterate will be to the minimum of the current estimation of that quadratic



 
 
 
 
 
 
 
 
 
 
Can the learning rate be too large?  
 
If there is a large learning rate, then there is the possibility of divergence 
 
Must we always have a decreasing learning rate in order for 

Gradient descent to converge?  Let’s put ourselves in the best possible

Setup.  







NO, learning rate does not need to decrease in order to guarantee convergence (in the convex 
case, eg a quadratic).  Note, the lecture showed that you converge linearly in the quadratic 
case if the step size was chosen appropriately (and is fixed forever) 
 

Set learning rate inversely proportional to largest curvature (largest 				    
	 	 	 	 	 	 	 Eigenvalue of the hessian) 
 
 
What happens if you run GD on f(x) = 1/2 L x^2 in 1-d? 
 
 
 
 
 
What happens if you run GD on f(x) = x^4 in 1-d? 
 

Convergence would be expected to be slower than in quadratic case 
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How might we determine the convergence rate in this context?  

You could set up a discrete recurrent relation based on GD



You could get roughly the behavior by solving the gradient flow



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What happens if you run GD on f(x) = |x| in 1-d 
 
You will approach x=0 but then you will

Bounce around it 
 
 
 
 
 
 
What happens if you run GD on f(x) =  
 
 
 
 
 
 
 
 
 
 
 

dt

How does learning rate qualitatively affect behavior
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How fast does gradient descent converge

mix fry fit Xi a pffzi

Suppose Xi s as i 00

How long do you need to
wait to get

a certain accuracy E

Can gain understanding in some CONVEX CASES
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Why do we care about convex functions?  Aren’t most functions in DL 
nonconvex? 
 
Allows us to rigorously prove things (such as convergence rates, largeness of step sizes)

 
There may be regions that are convex even if the the

Function is not globally convex



 
Any local minimum is a global minimum 

Many optimization solvers have been built for standard convex problems 
 
 
 
Comment about convexity and overparameterization. 
 
Consider an overparameterized neural network solving a regression problem

More parameters than data points 
 
If the set of theta that exactly fits the data has

Curvature, then the objective function is not even

Locally convex around such a point 
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Analytically show that this is the solution to the problem 
 
 
 
 
 
 
 
 
 
 
 
 

Convergence of GD for quadratic functions

Let frxi IXTQXbtzwhcro XEIRd.beRd Qc lRdXd is positivedefinite

Let m Xm IQ M XmaerQl k Mm

condition number
of Q

consider GD w fixed stop size a

hH
Xk off Xh

Note Q b is the unique global min off



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem If O
m then GO

for f Xl zXtQX btx satisfies
k

11th HE f No 11
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Should we think of GD as converging “quickly”? 
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If f doesnt curve up too much

and doesnt curve up too little

then GO with fixed step size

can Exhibit first order convergence
to the global minimizer



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convergence of GD for CONVEX

strongly smooth f
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Is f(x) = x^4 strongly smooth? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem Let f be convex and

M Strongly smooth If often
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Challenges of gradient descent

in deep learning
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all data batch gradient descent

Expensive
not possible in some contexts
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Show that this is a stochastic estimator of  
 
 
 
 
 
 
 
 
 
 
In practice, what are the considerations of generating a minibatch B uniformly 
at random over all subsets of size |B| of the data? 
 
Want the batch to be selected at random so that it “covers” all of the dataset / we want each 
batch to be representative of the full population.

 
Could create data access bottlenecks.

Could store the dataset in random order 
 
 
 
What considerations would affect the minibatch size you should use?  
 
Batch size is too small ==> large errors in estimation of gradient, in general this is fine, it just 
means the convenience will be slower



GPU Memory!  - One approach is to maximize batch size you can fit in memory 
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If the minibatch is chosen randomly

On average the gradient of a minibatch

is the full gradient

stochastic gradient descent

StochasticGradiscent
Want to solve main fro

Instead of having access to Fff Xl
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Write SGD as
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Simple model3 additive noise
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large a fast initial convergence
large Error

small a slow initial convergence
smaller Error

can formalize these observations ur theory



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysisof SGD

Consider a convex f 3Rd 0112
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Examples
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Is f(x) = x^4 strongly convex? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f doesn't curve up too little

Theorem

If f is m strongly convex

and G is MiB bounded and AE fo Fut
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looks like first order up to
CONVERGENCE SOME Error

Note For constant 0 do not expect
convergence

Smaller brings us closer to

but with slower convergence rate
initially



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose you are minimizing f(x) = |x| with SGD where  
 
 
 
and         positive and is decreasing with a limit of zero.  Do you expect 
convergence? 
 
 
If the step size decays too fast, then you may not be able to step all that far

Further you could ever step 
 
 
 
If the sum of alpha_k is finite, then we don’t expect convergence. 
 
 

How to choose stop sizes flearning rates

Run at a large value for a while

herp'Iaht
learning rate

Have schedule of An decaying in k

In these cases can hope for convergence
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Suppose you are minimizing f(x) =  
 
What do you think happens if you run 
plain gradient descent with fixed step size? 
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Nonconvexity and nonsmoothness

Li et al 2018



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

May be stuck in a local minimum

so may want to temporarily increase

learning rate to get unstuck

Summary's

Too large learning rate can lead to divergence

In convex case to get convergence or

should be small relative to curvature of f

Too small learning rate can lead to slow convorgen

For convex quadratic functions convergence
of

GD can be first order fast

For more general convex functions convergence

can be slow

SGD w fixed stop size is not Expected

to converge

Sap with decaying stop SRES may converge



 
 
 
 
 
 
 
 
 
What are the benefits of SGD? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


