Adversarial Examples for Deep Neural Networks

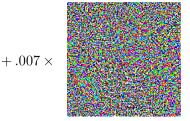
Outline:

Adversarial examples
White box attacks
Black box attacks
Real-world attacks
Adversarial Training

by Paul Hand
Northeastern University

Adversorial examples

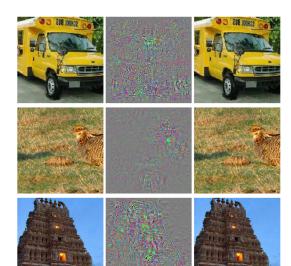
"panda"
57.7% confidence



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

(Goodfellow et al. 2015)

 $\begin{array}{c} x + \\ \epsilon \mathrm{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \text{"gibbon"} \\ 99.3 \ \% \ \mathrm{confidence} \end{array}$



GoogleNet gets this image wrong, but a human gets it right

Alex Net classifies these as ostrich.

(Szegedy et al. 2014)

Formulation

There is a trained neural net classifier

$$f(x) = y$$
image parameters parameters parameters over classes

This net assigns to χ the class $C(\chi) = \underset{i}{argmax} Y_i$

For some image X, find perturbation of Such that $C(x+\delta) \neq C(x)$ untargeted $C(x+\delta) = t$ targeted

Want & X+S to appear to a human as closs C(X)

Adversarial Examples :

Targeted vs untargeted
White box vs black box vs no box
Imperceptible vs perceptible
Digital vs physical
Specific vs Universal
Attack vs defense

What is the meaning and an example of each of the following concepts:
Targeted vs Untargeted
White box vs black box vs no box
Imperceptible vs perceptible
Digital vs physical
Specific vs universal
Attack vs defense

where
$$P_{x} = \{x' \mid ||x'-x||_{\infty} < \epsilon \}$$
 for example other p-norms constant

Why maximize loss with respect to the true label?

Why constrain the optimization?

What does constraining the optimization with P_x do?

Is this formulation targeted or untargeted?

Write down a formulation that is targeted/untargeted.

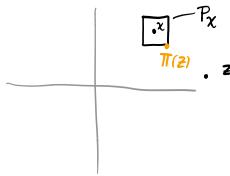
Projected Gradient Descent

To Solve
$$\mathring{o}$$

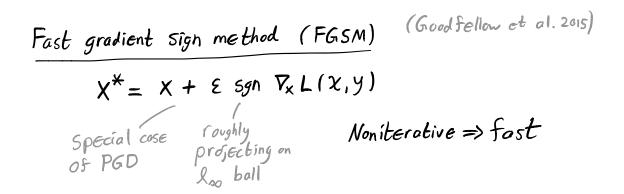
$$X_{t+1} = \prod \left(X_t + \eta_t \nabla_{\chi} L(f(\chi_t), y) \right)$$

$$projector \quad Step \quad gives \quad direction \quad of \quad maximal \quad ascent \quad of \quad L \quad wrt \quad \chi, \quad evaluated \quad at \quad \chi_t$$

$$W / \prod(z) = \underset{\chi' \in P_{\chi}}{argmin} \quad \|\chi' - z\|_2 \quad closest \quad point \quad respectively.$$



With Pi(z), do all points z map to a corner of the L^inf ball?



This method roughly performs projected gradient descent. Explain.

In what sense is this method non-iterative?

Carlini-Wagner attack (Carlini+Wagner 2017)

Want & min ||S||p st.
$$C(X+\delta) = t$$

hard to work with this constraint

Suppose we have access to classifier f

Notation & $Z = f(X)$ is closs logits

Solve & min ||S||p st (max $Z(X+\delta)_i - Z(X+\delta)_t$) $+ \leq 0$

Repaired form & min ||S||p $+ \lambda$ (max $Z(X+\delta)_i - Z(X+\delta)_t$) $+ \delta$

Penalized form & min ||S||p $+ \lambda$ (max $Z(X+\delta)_i - Z(X+\delta)_t$) $+ \delta$

Is this targeted or untargeted?

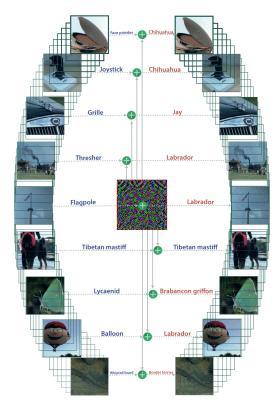
Design a variant that is targeted/untargeted.

Commonalities of methods so for?

- Requires gradients of classifier (white box)
- Has variants for targeted and untargeted attacks

Find 8 st X+8 is misclassified for most images X

S is a universal or image agnostic perturbation



Algorithm 1 Computation of universal perturbations.

- 1: **input:** Data points X, classifier \hat{k} , desired ℓ_p norm of the perturbation ξ , desired accuracy on perturbed samples δ .
- 2: **output:** Universal perturbation vector v.
- 3: Initialize $v \leftarrow 0$.
- 4: while $Err(X_v) \leq 1 \delta$ do
- for each datapoint $x_i \in X$ do 5:
- 6: if $\hat{k}(x_i + v) = \hat{k}(x_i)$ then
- Compute the minimal perturbation that 7: sends $x_i + v$ to the decision boundary:

$$\Delta v_i \leftarrow \arg\min_r \|r\|_2 \text{ s.t. } \hat{k}(x_i + v + r) \neq \hat{k}(x_i).$$

Update the perturbation:

$$v \leftarrow \mathcal{P}_{p,\xi}(v + \Delta v_i).$$

of rodius k

- end if 9:
- end for 10:

8:

11: end while

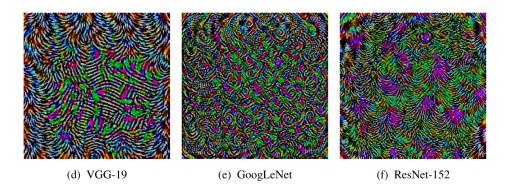
X_V - data set perturbed by V {X1+V, X2+V, --- }

Err(Xv) - fraction of misclossified images in perturbed dataset

multiple ways to solve

What does it mean to project onto the I_p ball of radius xi?
Roughly speaking, how is a universal perturbation built?

Examples of Universal perturbations



Universal Perturbations generalize across architectures

	VGG-F	CaffeNet	GoogLeNet	VGG-16	VGG-19	ResNet-152
VGG-F	93.7%	71.8%	48.4%	42.1%	42.1%	47.4 %
CaffeNet	74.0%	93.3%	47.7%	39.9%	39.9%	48.0%
GoogLeNet	46.2%	43.8%	78.9%	39.2%	39.8%	45.5%
VGG-16	63.4%	55.8%	56.5%	78.3%	73.1%	63.4%
VGG-19	64.0%	57.2%	53.6%	73.5%	77.8%	58.0%
ResNet-152	46.3%	46.3%	50.5%	47.0%	45.5%	84.0%

Table 2: Generalizability of the universal perturbations across different networks. The percentages indicate the fooling rates. The rows indicate the architecture for which the universal perturbations is computed, and the columns indicate the architecture for which the fooling rate is reported.

You can attack on unknown classifier by training your own (with a different architecture) and running a white box method

Why do you suspect that adversarial examples can generalize across different` architectures?

Black box attacks

Cant backprop/differentiate the Classifier you are attacking

You may have access to logit output or perhaps only to predictions or nothing

Approaches?

Zeroth order Optimization (200)

Transferability Attacks

200 in generals

To compute min g(X) Wo derivatives;

1d case?

XeIR' with the valves

of g at these
3 points, can

estimate s'(x)X-5 x x+8 & g''(x)

 $g'(x) = \frac{g(x+\delta) - g(x-\delta)}{2\delta}$ $g''(x) = \frac{g(x+\delta) - 2g(x) + g(x-\delta)}{\delta^2}$

Model as a parabola and find it's minimum.

Higher dim case of Stochastic Coordinate Descent Choose a random coordinate ei Compute min g(x+sei) as in 1d

ZOO for adversarial examples: (w/ logits)

Use Stochastic Coordinate descent on

CW formulation (Chen et al. 2017)

ZOO for adversorial examples; (W/only class labels)

Randomized gradient free (RGF) method

(Cheng et al. 2018)

In adversarial examples, accurate gradients are not needed. (Eg FGSM)

Transforability Attacks (Livet al. 2017) Ensemble approach

Train multiple classifiers w/ different architectures

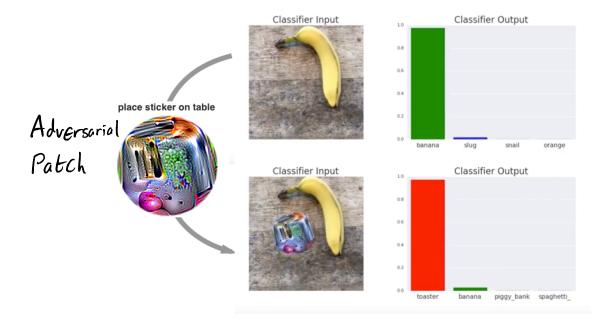
Try to fool average (logit) output over the ensemble

	RMSD	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	17.17	0%	0%	0%	0%	0%
-ResNet-101	17.25	0%	1%	0%	0%	0%
-ResNet-50	17.25	0%	0%	2%	0%	0%
-VGG-16	17.80	0%	0%	0%	6%	0%
-GoogLeNet	17.41	0%	0%	0%	0%	5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based approach. The first column indicates the average RMSD of the generated adversarial images. Cell (i,j) corresponds to the accuracy of the attack generated using four models except model i (row) when evaluated over model j (column). In each row, the minus sign "-" indicates that the model of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the appendix (Table 14).

Real World Attacks

(Brown et al. 2018)



Patch is so visually salient, a classifier ignores the rest of the image

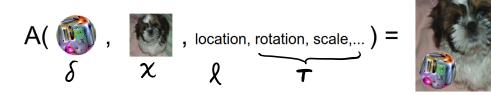
Challenges?

Can't change all pixels

Needs to work for all backgrounds

Must be robust to physical transformation

Build a model for transformations;

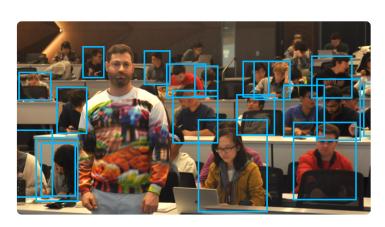


Find adversorial patch δ by choosing target class to argmax $\mathbb{E}_{X,l,T}$ log $P(\text{img }A(\delta_1x_1l_1T) \text{ is class }t)$

Can make it further robust by using ensembles

Other examples:

(Sharif et al. 2016)



(Wu et al. 2019)

(Eykholt et al. 2018)

Train a classifier and try to ensure adversarial perturbations get correctly classified

Example for FGSM;

Instead of optimizing

L(0,x,y) at train time,

Optimize

 $\propto L(\theta, x, y) + (1-\alpha) L(\theta, x + \epsilon \, sgn \, \nabla_{x} L(\theta, x, y), y)$

weighted combination FGSM adversarial example

Challenge?
Wont be robust to other methods
Game of Cat and mouse