Challenges in working with natural language and sequential data
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RNNs have a limited window of past times/positions that
They can pay attention to



Attention

As aliéns entered our plgnet and begdh 1o colonize cafin ¥ centain group of extraterrestrials ..
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Recurrent Neural Networks has a short reference window

As aliens entered our planet and began to|colonize earth a certain group of extraterrestrials ...
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Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:
Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.
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Example of challenges that attention can help with: Machine  Trorslgtven

| didn’t put the trophy in the suitca@@vas too small

| didn’t put the trophy in the suitcase becausg i}/was too big
N



Transformer Architecture - Application to Dllachine Translation
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Figure J: The Transformer - model architecture.
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several

attention layers running in parallel.
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Application to other NLP tasks

If you wanted to do
sentiment analysis how
would you modify

this architecture?
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Figure 1: The Transformer - model architecture.



Why Transformers are awesome

* All-to-all comparisons can be done fuIIy parallel

* GPUs change the game for compute Lpl/é éll ﬂmﬁf

* NA2 but extra parallel operations can be “free” l
* (RNN/LSTM must be computed in serial per token.) &LC"\.S .56/6[ 7

« Sigmoid / tanh activations are tough
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Sequence Modeling

Challenges with RNNs Transformer Networks
* Long range dependencies ||+ Fa

* Gradient vanishing and
explosion
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel

size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? d) o(1) O(1)

Recurrent O(n - ) O(n) O(n)

Convolutional O(k d?) o(1) O(log(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)




