1) Explain all of the terms in the optimization algorithm presented in Section 5

2) The AlexNet paper used a learning rate schedule where the learning rate
was lowered when validation error stopped improving. Why is it reasonable to
have a schedule where learning rate decreases? Why wait until validation error
stops improving (as opposed to imposing a specific schedule based on epoch
number)?

If you use epochs to decrease learning rate, the optimal place to decrease learning rate will
depend on the dataset.

If you take # epochs, you don’t know when performance will saturate

We want largest learning rate for as long as possible. Only decrease when performance
saturates.



3) Explain Figure 1

4) What is dropout? What evidence is there that it works? Why does it work?

5) Explain the data augmentation strategies used in AlexNet. What do these
strategies accomplish?
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Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.



Despite the attractive qualities of CNNs, and despite the relative efficiency of their local architecture,
they have still been prohibitively expensive to apply in large scale to high-resolution images. Luck-
ily, current GPUs, paired with a highly-optimized implementation of 2D convolution, are powerful
enough to facilitate the training of interestingly-large CNNs, and recent datasets such as ImageNet
contain enough labeled examples to train such models without severe overfitting.

The specific contributions of this paper are as follows: we trained one of the largest convolutional
neural networks to date on the subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-2012
competitions [2] and achieved by far the best results ever reported on these datasets. We wrote a
highly-optimized GPU implementation of 2D convolution and all the other operations inherent in
training convolutional neural networks, which we make available publicly'. Our network contains
a number of new and unusual features which improve its performance and reduce its training time,
which are detailed in Section 3. The size of our network made overfitting a significant problem, even
with 1.2 million labeled training examples, so we used several effective techniques for preventing
overfitting, which are described in Section 4. Our final network contains five convolutional and
three fully-connected layers, and this depth seems to be important: we found that removing any
convolutional layer (each of which contains no more than 1% of the model’s parameters) resulted in
inferior performance.

In the end, the network’s size is limited mainly by the amount of memory available on current GPUs
and by the amount of training time that we are willing to tolerate. Our network takes between five
and six days to train on two GTX 580 3GB GPUs. All of our experiments suggest that our results
can be improved simply by waiting for faster GPUs and bigger datasets to become available.

2 The Dataset

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000
categories. The images were collected from the web and labeled by human labelers using Ama-
zon’s Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual Object
Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) has been held. ILSVRC uses a subset of ImageNet with roughly 1000 images in each of
1000 categories. In all, there are roughly 1.2 million training images, 50,000 validation images, and
150,000 testing images.

ILSVRC-2010 is the only version of ILSVRC for which the test set labels are available, so this is
the version on which we performed most of our experiments. Since we also entered our model in
the ILSVRC-2012 competition, in Section 6 we report our results on this version of the dataset as
well, for which test set labels are unavailable. On ImageNet, it is customary to report two error rates:
top-1 and top-5, where the top-5 error rate is the fraction of test images for which the correct label
is not among the five labels considered most probable by the model.

ImageNet consists of variable-resolution images, while our system requires a constant input dimen-
sionality. Therefore, we down-sampled the images to a fixed resolution of 256 x 256. Given a
rectangular image, we first rescaled the image such that the shorter side was of length 256, and then
cropped out the central 256 x 256 patch from the resulting image. We did not pre-process the images
in any other way, except for subtracting the mean activity over the training set from each pixel. So
we trained our network on the (centered) raw RGB values of the pixels.

3 The Architecture

The architecture of our network is summarized in Figure 2. It contains eight learned layers —
five convolutional and three fully-connected. Below, we describe some of the novel or unusual
features of our network’s architecture. Sections 3.1-3.4 are sorted according to our estimation of
their importance, with the most important first.

"http://code.google.com/p/cuda-convnet/



3.1 ReLU Nonlinearity

The standard way to model a neuron’s output f as
a function of its input = is with f(x) = tanh(x)
or f(x) = (14 e %)~ In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(z) = max(0,z). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
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Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster

than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

tional neuron models in CNNs. For example, Jarrett
etal. [11] claim that the nonlinearity f(x) = [tanh(z)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Ciresan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net?.

>The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.



3.3 Local Response Normalization

ReLUs have the desirable property that they do not require input normalization to prevent them
from saturating. If at least some training examples produce a positive input to a ReL.U, learning will
happen in that neuron. However, we still find that the following local normalization scheme aids
generalization. Denoting by a;y the activity of a neuron computed by applying kernel ¢ at position

(z,y) and then applying the ReLU nonlinearity, the response-normalized activity b;yy is given by

the expression

min(N—1,i+n/2) A

by = /| F+a Yoo (ady)?
j=max(0,i—n/2)
where the sum runs over n “adjacent” kernel maps at the same spatial position, and NNV is the total
number of kernels in the layer. The ordering of the kernel maps is of course arbitrary and determined
before training begins. This sort of response normalization implements a form of lateral inhibition
inspired by the type found in real neurons, creating competition for big activities amongst neuron
outputs computed using different kernels. The constants &, n, o, and 3 are hyper-parameters whose
values are determined using a validation set; we used k = 2, n = 5, a = 10~4, and 8 =0.75. We
applied this normalization after applying the ReLLU nonlinearity in certain layers (see Section 3.5).

This scheme bears some resemblance to the local contrast normalization scheme of Jarrett et al. [11],
but ours would be more correctly termed “brightness normalization”, since we do not subtract the
mean activity. Response normalization reduces our top-1 and top-5 error rates by 1.4% and 1.2%,
respectively. We also verified the effectiveness of this scheme on the CIFAR-10 dataset: a four-layer
CNN achieved a 13% test error rate without normalization and 11% with normalization®.

3.4 Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel
map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (e.g.,
[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling
units spaced s pixels apart, each summarizing a neighborhood of size z x z centered at the location
of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed
in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our
network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by 0.4% and
0.3%, respectively, as compared with the non-overlapping scheme s = 2,z = 2, which produces
output of equivalent dimensions. We generally observe during training that models with overlapping
pooling find it slightly more difficult to overfit.

3.5 Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net
contains eight layers with weights; the first five are convolutional and the remaining three are fully-
connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces
a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression
objective, which is equivalent to maximizing the average across training cases of the log-probability
of the correct label under the prediction distribution.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel
maps in the previous layer which reside on the same GPU (see Figure 2). The kernels of the third
convolutional layer are connected to all kernel maps in the second layer. The neurons in the fully-
connected layers are connected to all neurons in the previous layer. Response-normalization layers
follow the first and second convolutional layers. Max-pooling layers, of the kind described in Section
3.4, follow both response-normalization layers as well as the fifth convolutional layer. The ReLU
non-linearity is applied to the output of every convolutional and fully-connected layer.

The first convolutional layer filters the 224 x 224 x 3 input image with 96 kernels of size 11 x 11 x 3
with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring

3We cannot describe this network in detail due to space constraints, but it is specified precisely by the code
and parameter files provided here: http://code.google.com/p/cuda-convnet/.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096-4096-1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 x 5 x 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 x 3 X
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 x 3 x 192, and the fifth convolutional layer has 256
kernels of size 3 x 3 x 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224 x 224 patches (and their horizontal reflections) from the
256 x 256 images and training our network on these extracted patches*. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 x 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

*This is the reason why the input images in Figure 2 are 224 x 224 x 3-dimensional.



with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel I, =
R G 7B . -
[(LF, IS, I5]" we add the following quantity:
[P1, P2, Psl[onAr, o, asAs]”

where p; and \; are ith eigenvector and eigenvalue of the 3 x 3 covariance matrix of RGB pixel
values, respectively, and «; is the aforementioned random variable. Each «; is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

—rr aln ,’ Combining the predictions of many different models is a very successful way to reduce test errors
1 [1, 3], but it appears to be too expensive for big neural networks that already take several days
Drep_0v to train. There is, however, a very efficient version of model combination that only costs about a
/ 0.5 fraC factor of two during training. The recently-introduced technique, called “dropout” [10], consists
? GJje'J of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
f“{% but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
1 ’\6""*5 since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
Usé a learn more robust features that are useful in conjunction with many different random subsets of the
W@'f“ \;} 05 other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by

the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

S Details of learning

We trained our models using stochastic gradient descent

\Né_i 3\\ with a batch size of 128 examples, momentum of 0.9, and
other words, t decay here is not merely a regularizer: 11 x11x 3 learned by the first convolutional

o Welght decay of 0.0005. We found that this small amount
(}\6/ 4 ) L decay was important for the model to learn. In Figure 3: 96 convolutional kernels of size

- U\ ”‘.ZAL"‘\ it rgduces the mode™\raining error. The update rule for jayer on the 224 x 224 x 3 input images. The
9\ r@j weight w was

\/ top 48 kernels were learned on GPU 1 while
/I\.d\ oL the bottom 48 kernels were learned on GPU
- P 6@’“ viy1 = 0.9-v; =0.0005: € w; —€- <8w w > ,; 2. See Section 6.1 for details.

wz+1 = Wi+ Vit

“ wuwhere 1 is the iteration index, v is the momentum variable, € is the learning rate, and < > is
D;

L<W)+ the average over the ¢th batch D; of the derivative of the objective with respect to w, evaluated at
v_vw

W;.
W §(W) .
We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
V F.. v IX\JViation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
L as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and



reduced three times prior to termination. We trained the network for roughly 90 cycles through the
training set of 1.2 million images, which took five to six days on two NVIDIA GTX 580 3GB GPUs.

6 Results

Our results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5
test set error rates of 37.5% and 17.0%°. The best performance achieved during the ILSVRC-
2010 competition was 47.1% and 28.2% with an approach that averages the predictions produced
from six sparse-coding models trained on different features [2], and since then the best pub-
lished results are 45.7% and 25.7% with an approach that averages the predictions of two classi-
fiers trained on Fisher Vectors (FVs) computed from two types of densely-sampled features [24].

We also entered our model in the ILSVRC-2012 com- | Model | Top-1 | Top-5 |
petition and report our results in Table 2. Since the | Sparse coding [2] | 47.1% | 28.2%
ILSVRC-2012 test set labels are not publicly available, | SIFT + FVs [24] | 45.7% | 25.7%
we cannot report test error rates for all the models that | CNN 37.5% | 17.0%
we tried. In the remainder of this paragraph, we use

validation and test error rates interchangeably because Table 1: Comparison of results on ILSVRC-
in our experience they do not differ by more than 0.1% 2010 test set. In italics are best results
(see Table 2). The CNN described in this paper achieves achieved by others.

a top-5 error rate of 18.2%. Averaging the predictions

of five similar CNNs gives an error rate of 16.4%. Training one CNN, with an extra sixth con-
volutional layer over the last pooling layer, to classify the entire ImageNet Fall 2011 release
(15M images, 22K categories), and then “fine-tuning” it on ILSVRC-2012 gives an error rate of
16.6%. Averaging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re-
lease with the aforementioned five CNNs gives an error rate of 15.3%. The second-best con-
test entry achieved an error rate of 26.2% with an approach that averages the predictions of sev-
eral classifiers trained on FVs computed from different types of densely-sampled features [7].

Finally, we also report our error

rates on the Fall 2009 Versionlof l Model l Top-1 (val) l Top-5 (val) l Top-5 (test) ‘
ImageNet with 10,184 categories

M . SIFT + FVs [7] — — 26.2%
nd 8. .
Gataset e folow the convention || CNN 7% | 182% —
) . . 5 CNNs 38.1% 16.4% 16.4%
in the literature of using half of TONN® 39.0% 16.6%
the images for training and half . i i —
for testing. Since there is no es- 7 CNNs 36.7% 154% 15.3%

tablished test set, our split neces-
sarily differs from the splits used
by previous authors, but this does
not affect the results appreciably.
Our top-1 and top-5 error rates
on this dataset are 67.4% and
40.9 %, attained by the net described above but with an additional, sixth convolutional layer over the
last pooling layer. The best published results on this dataset are 78.1% and 60.9% [19].

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.

6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety of frequency- and orientation-selective kernels, as well as various col-
ored blobs. Notice the specialization exhibited by the two GPUs, a result of the restricted connec-
tivity described in Section 3.5. The kernels on GPU 1 are largely color-agnostic, while the kernels
on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is
independent of any particular random weight initialization (modulo a renumbering of the GPUs).

The error rates without averaging predictions over ten patches as described in Section 4.1 are 39.0% and
18.3%.
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Question 6. The ResNet paper reports 3.57% error on the ILSVRC. Some
people would claim this performance is superhuman. Look up the rate of error
achieved by humans. Why is the human error rate not 0%? (After all, wasn’t it
labelled by humans?) Do you think it is fair to say that this net can achieve
superhuman performance at image classification?

Question 7. Explain the right column of Figure 3. Include the meaning of the
text in each of the boxes, what the solid arrows mean, what the dashed arrows
mean, what ”pool, /2” and ”avg pool” mean.



Question 8. Estimate the number of weight parameters in the three nets
depicted in Figure 3 of the ResNet paper. Identify where most of the
parameters are in each of the three nets.

Question 9. Explain Figure 4 of the ResNet paper. Make sure to explain why
there are two sudden steep drops in error % in both plots.
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Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8 X
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitionsl, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

"http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as #(x), we let the stacked nonlinear
layers fit another mapping of F(x) := #H(x) — x. The orig-
inal mapping is recast into F(x) +x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x) 4 x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the Ist place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
Ist places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3,45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.
Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-



way networks have not demonstrated accuracy gains with
extremely increased depth (e.g., over 100 layers).

3. Deep Residual Learning
3.1. Residual Learning

Let us consider (x) as an underlying mapping to be
fit by a few stacked layers (not necessarily the entire net),
with x denoting the inputs to the first of these layers. If one
hypothesizes that multiple nonlinear layers can asymptoti-
cally approximate complicated functions?, then it is equiv-
alent to hypothesize that they can asymptotically approxi-
mate the residual functions, i.e., H(x) — x (assuming that
the input and output are of the same dimensions). So
rather than expect stacked layers to approximate H(x), we
explicitly let these layers approximate a residual function
F(x) := H(x) — x. The original function thus becomes
F(x)+x. Although both forms should be able to asymptot-
ically approximate the desired functions (as hypothesized),
the ease of learning might be different.

This reformulation is motivated by the counterintuitive
phenomena about the degradation problem (Fig. 1, left). As
we discussed in the introduction, if the added layers can
be constructed as identity mappings, a deeper model should
have training error no greater than its shallower counter-
part. The degradation problem suggests that the solvers
might have difficulties in approximating identity mappings
by multiple nonlinear layers. With the residual learning re-
formulation, if identity mappings are optimal, the solvers
may simply drive the weights of the multiple nonlinear lay-
ers toward zero to approach identity mappings.

In real cases, it is unlikely that identity mappings are op-
timal, but our reformulation may help to precondition the
problem. If the optimal function is closer to an identity
mapping than to a zero mapping, it should be easier for the
solver to find the perturbations with reference to an identity
mapping, than to learn the function as a new one. We show
by experiments (Fig. 7) that the learned residual functions in
general have small responses, suggesting that identity map-
pings provide reasonable preconditioning.

3.2. Identity Mapping by Shortcuts

We adopt residual learning to every few stacked layers.
A building block is shown in Fig. 2. Formally, in this paper
we consider a building block defined as:

y = F(xAWi}) +x. ey

Here x and y are the input and output vectors of the lay-
ers considered. The function F(x,{W;}) represents the
residual mapping to be learned. For the example in Fig. 2
that has two layers, 7 = W0 (W;x) in which o denotes

2This hypothesis, however, is still an open question. See [28].

ReLU [29] and the biases are omitted for simplifying no-
tations. The operation F + x is performed by a shortcut
connection and element-wise addition. We adopt the sec-
ond nonlinearity after the addition (i.e., o(y), see Fig. 2).

The shortcut connections in Eqn.(1) introduce neither ex-
tra parameter nor computation complexity. This is not only
attractive in practice but also important in our comparisons
between plain and residual networks. We can fairly com-
pare plain/residual networks that simultaneously have the
same number of parameters, depth, width, and computa-
tional cost (except for the negligible element-wise addition).

The dimensions of x and F must be equal in Eqn.(1).
If this is not the case (e.g., when changing the input/output
channels), we can perform a linear projection W, by the
shortcut connections to match the dimensions:

y = F(x,{W;}) + W,x. 2)

We can also use a square matrix Wy in Eqn.(1). But we will
show by experiments that the identity mapping is sufficient
for addressing the degradation problem and is economical,
and thus W; is only used when matching dimensions.

The form of the residual function F is flexible. Exper-
iments in this paper involve a function F that has two or
three layers (Fig. 5), while more layers are possible. But if
F has only a single layer, Eqn.(1) is similar to a linear layer:
y = Wix +x, for which we have not observed advantages.

We also note that although the above notations are about
fully-connected layers for simplicity, they are applicable to
convolutional layers. The function F(x, {W;}) can repre-
sent multiple convolutional layers. The element-wise addi-
tion is performed on two feature maps, channel by channel.

3.3. Network Architectures

We have tested various plain/residual nets, and have ob-
served consistent phenomena. To provide instances for dis-
cussion, we describe two models for ImageNet as follows.

Plain Network. Our plain baselines (Fig. 3, middle) are
mainly inspired by the philosophy of VGG nets [41] (Fig. 3,
left). The convolutional layers mostly have 3 x3 filters and
follow two simple design rules: (i) for the same output
feature map size, the layers have the same number of fil-
ters; and (ii) if the feature map size is halved, the num-
ber of filters is doubled so as to preserve the time com-
plexity per layer. We perform downsampling directly by
convolutional layers that have a stride of 2. The network
ends with a global average pooling layer and a 1000-way
fully-connected layer with softmax. The total number of
weighted layers is 34 in Fig. 3 (middle).

It is worth noticing that our model has fewer filters and
lower complexity than VGG nets [41] (Fig. 3, left). Our 34-
layer baseline has 3.6 billion FLOPs (multiply-adds), which
is only 18% of VGG-19 (19.6 billion FLOPs).
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.
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Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded

parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1x1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

in [21, 41]. The image is resized with its shorter side ran-

?xm{"'domly sampled in [256,480] for scale augmentation [41].

A 224 %224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60 x 10* iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the
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Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error®. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 33 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing — the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3 ) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.



model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43T
GoogLeNet [44] ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

method top-5 err. (test)
VGG [41] ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

256-d

1x1, 64

1x1, 256

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56 x56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design®. For each residual function F, we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1 x1,3x3, and 1 x1 convolutions, where the 1x1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 33 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.



34-layer net with this 3-layer bottleneck block, resulting in
a 50-layer ResNet (Table 1). We use option B for increasing
dimensions. This model has 3.8 billion FLOPs.

101-layer and 152-layer ResNets: We construct 101-
layer and 152-layer ResNets by using more 3-layer blocks
(Table 1). Remarkably, although the depth is significantly
increased, the 152-layer ResNet (11.3 billion FLOPs) still
has lower complexity than VGG-16/19 nets (15.3/19.6 bil-
lion FLOPs).

The 50/101/152-layer ResNets are more accurate than
the 34-layer ones by considerable margins (Table 3 and 4).
We do not observe the degradation problem and thus en-
joy significant accuracy gains from considerably increased
depth. The benefits of depth are witnessed for all evaluation
metrics (Table 3 and 4).

Comparisons with State-of-the-art Methods. In Table 4
we compare with the previous best single-model results.
Our baseline 34-layer ResNets have achieved very compet-
itive accuracy. Our 152-layer ResNet has a single-model
top-5 validation error of 4.49%. This single-model result
outperforms all previous ensemble results (Table 5). We
combine six models of different depth to form an ensemble
(only with two 152-layer ones at the time of submitting).
This leads to 3.57% top-5 error on the test set (Table 5).
This entry won the st place in ILSVRC 2015.

4.2. CIFAR-10 and Analysis

We conducted more studies on the CIFAR-10 dataset
[20], which consists of 50k training images and 10k test-
ing images in 10 classes. We present experiments trained
on the training set and evaluated on the test set. Our focus
is on the behaviors of extremely deep networks, but not on
pushing the state-of-the-art results, so we intentionally use
simple architectures as follows.

The plain/residual architectures follow the form in Fig. 3
(middle/right). The network inputs are 32x32 images, with
the per-pixel mean subtracted. The first layer is 33 convo-
lutions. Then we use a stack of 6n layers with 3x3 convo-
lutions on the feature maps of sizes {32, 16, 8} respectively,
with 2n layers for each feature map size. The numbers of
filters are {16, 32, 64} respectively. The subsampling is per-
formed by convolutions with a stride of 2. The network ends
with a global average pooling, a 10-way fully-connected
layer, and softmax. There are totally 6n+2 stacked weighted
layers. The following table summarizes the architecture:

output map size 32x32 16x16 8x8
# layers 1+2n 2n 2n
# filters 16 32 64

When shortcut connections are used, they are connected
to the pairs of 3x3 layers (totally 3n shortcuts). On this
dataset we use identity shortcuts in all cases (i.e., option A),

method error (%)

Maxout [10] 9.38

NIN [25] 8.81

DSN [24] 8.22

# layers | # params

FitNet [35] 19 2.5M 8.39
Highway [42, 43] 19 2.3M 7.54 (7.7240.16)

Highway [42, 43] 32 1.25M | 8.80

ResNet 20 0.27M | 8.75

ResNet 32 046M | 7.51

ResNet 44 0.66M | 7.17

ResNet 56 0.85M | 6.97
ResNet 110 1.7M 6.43 (6.6140.16)

ResNet 1202 194M | 7.93

Table 6. Classification error on the CIFAR-10 test set. All meth-
ods are with data augmentation. For ResNet-110, we run it 5 times
and show “best (mean=+std)” as in [43].

so our residual models have exactly the same depth, width,
and number of parameters as the plain counterparts.

We use a weight decay of 0.0001 and momentum of 0.9,
and adopt the weight initialization in [13] and BN [16] but
with no dropout. These models are trained with a mini-
batch size of 128 on two GPUs. We start with a learning
rate of 0.1, divide it by 10 at 32k and 48k iterations, and
terminate training at 64k iterations, which is determined on
a 45k/5k train/val split. We follow the simple data augmen-
tation in [24] for training: 4 pixels are padded on each side,
and a 32x32 crop is randomly sampled from the padded
image or its horizontal flip. For testing, we only evaluate
the single view of the original 3232 image.

We compare n = {3,5,7,9}, leading to 20, 32, 44, and
56-layer networks. Fig. 6 (left) shows the behaviors of the
plain nets. The deep plain nets suffer from increased depth,
and exhibit higher training error when going deeper. This
phenomenon is similar to that on ImageNet (Fig. 4, left) and
on MNIST (see [42]), suggesting that such an optimization
difficulty is a fundamental problem.

Fig. 6 (middle) shows the behaviors of ResNets. Also
similar to the ImageNet cases (Fig. 4, right), our ResNets
manage to overcome the optimization difficulty and demon-
strate accuracy gains when the depth increases.

We further explore n = 18 that leads to a 110-layer
ResNet. In this case, we find that the initial learning rate
of 0.1 is slightly too large to start converging®. So we use
0.01 to warm up the training until the training error is below
80% (about 400 iterations), and then go back to 0.1 and con-
tinue training. The rest of the learning schedule is as done
previously. This 110-layer network converges well (Fig. 6,
middle). It has fewer parameters than other deep and thin

SWith an initial learning rate of 0.1, it starts converging (<90% error)
after several epochs, but still reaches similar accuracy.
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before nonlinearity. Top: the layers are shown in their original
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networks such as FitNet [35] and Highway [42] (Table 6),
yet is among the state-of-the-art results (6.43%, Table 6).

Analysis of Layer Responses. Fig. 7 shows the standard
deviations (std) of the layer responses. The responses are
the outputs of each 3x3 layer, after BN and before other
nonlinearity (ReLU/addition). For ResNets, this analy-
sis reveals the response strength of the residual functions.
Fig. 7 shows that ResNets have generally smaller responses
than their plain counterparts. These results support our ba-
sic motivation (Sec.3.1) that the residual functions might
be generally closer to zero than the non-residual functions.
We also notice that the deeper ResNet has smaller magni-
tudes of responses, as evidenced by the comparisons among
ResNet-20, 56, and 110 in Fig. 7. When there are more
layers, an individual layer of ResNets tends to modify the
signal less.

Exploring Over 1000 layers. We explore an aggressively
deep model of over 1000 layers. We set n = 200 that
leads to a 1202-layer network, which is trained as described
above. Our method shows no optimization difficulty, and
this 103-layer network is able to achieve training error
<0.1% (Fig. 6, right). TIts test error is still fairly good
(7.93%, Table 6).

But there are still open problems on such aggressively
deep models. The testing result of this 1202-layer network
is worse than that of our 110-layer network, although both

training data 07+12 07++12
test data VOC 07 test VOC 12 test
VGG-16 73.2 70.4

ResNet-101 76.4 73.8

Table 7. Object detection mAP (%) on the PASCAL VOC
2007/2012 test sets using baseline Faster R-CNN. See also Ta-
ble 10 and 11 for better results.

metric mAP@.5 mAP@].5, .95]
VGG-16 41.5 21.2
ResNet-101 48.4 27.2

Table 8. Object detection mAP (%) on the COCO validation set
using baseline Faster R-CNN. See also Table 9 for better results.

have similar training error. We argue that this is because of
overfitting. The 1202-layer network may be unnecessarily
large (19.4M) for this small dataset. Strong regularization
such as maxout [10] or dropout [14] is applied to obtain the
best results ([10, 25, 24, 35]) on this dataset. In this paper,
we use no maxout/dropout and just simply impose regular-
ization via deep and thin architectures by design, without
distracting from the focus on the difficulties of optimiza-
tion. But combining with stronger regularization may im-
prove results, which we will study in the future.

4.3. Object Detection on PASCAL and MS COCO

Our method has good generalization performance on
other recognition tasks. Table 7 and 8 show the object de-
tection baseline results on PASCAL VOC 2007 and 2012
[5] and COCO [26]. We adopt Faster R-CNN [32] as the de-
tection method. Here we are interested in the improvements
of replacing VGG-16 [41] with ResNet-101. The detection
implementation (see appendix) of using both models is the
same, so the gains can only be attributed to better networks.
Most remarkably, on the challenging COCO dataset we ob-
tain a 6.0% increase in COCQ’s standard metric (mnAP@][.5,
.95]), which is a 28% relative improvement. This gain is
solely due to the learned representations.

Based on deep residual nets, we won the 1st places in
several tracks in ILSVRC & COCO 2015 competitions: Im-
ageNet detection, ImageNet localization, COCO detection,
and COCO segmentation. The details are in the appendix.
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A. Object Detection Baselines

In this section we introduce our detection method based
on the baseline Faster R-CNN [32] system. The models are
initialized by the ImageNet classification models, and then
fine-tuned on the object detection data. We have experi-
mented with ResNet-50/101 at the time of the ILSVRC &
COCO 2015 detection competitions.

Unlike VGG-16 used in [32], our ResNet has no hidden
fc layers. We adopt the idea of “Networks on Conv fea-
ture maps” (NoC) [33] to address this issue. We compute
the full-image shared conv feature maps using those lay-
ers whose strides on the image are no greater than 16 pixels
(i.e.,convl, conv2_x, conv3_x, and conv4_x, totally 91 conv
layers in ResNet-101; Table 1). We consider these layers as
analogous to the 13 conv layers in VGG-16, and by doing
s0, both ResNet and VGG-16 have conv feature maps of the
same total stride (16 pixels). These layers are shared by a
region proposal network (RPN, generating 300 proposals)
[32] and a Fast R-CNN detection network [7]. Rol pool-
ing [7] is performed before conv5_1. On this Rol-pooled
feature, all layers of conv5_x and up are adopted for each
region, playing the roles of VGG-16’s fc layers. The final
classification layer is replaced by two sibling layers (classi-
fication and box regression [7]).

For the usage of BN layers, after pre-training, we com-
pute the BN statistics (means and variances) for each layer
on the ImageNet training set. Then the BN layers are fixed
during fine-tuning for object detection. As such, the BN
layers become linear activations with constant offsets and
scales, and BN statistics are not updated by fine-tuning. We
fix the BN layers mainly for reducing memory consumption
in Faster R-CNN training.

PASCAL VOC

Following [7, 32], for the PASCAL VOC 2007 fest set,
we use the 5k frainval images in VOC 2007 and 16k train-
val images in VOC 2012 for training (“07+12”). For the
PASCAL VOC 2012 test set, we use the 10k trainval+test
images in VOC 2007 and 16k trainval images in VOC 2012
for training (“07++12”). The hyper-parameters for train-
ing Faster R-CNN are the same as in [32]. Table 7 shows
the results. ResNet-101 improves the mAP by >3% over
VGG-16. This gain is solely because of the improved fea-
tures learned by ResNet.

MS COCO

The MS COCO dataset [26] involves 80 object cate-
gories. We evaluate the PASCAL VOC metric (mAP @
IoU = 0.5) and the standard COCO metric (mAP @ IoU =
.5:.05:.95). We use the 80k images on the train set for train-
ing and the 40k images on the val set for evaluation. Our
detection system for COCO is similar to that for PASCAL
VOC. We train the COCO models with an 8-GPU imple-
mentation, and thus the RPN step has a mini-batch size of

10

8 images (i.e., 1 per GPU) and the Fast R-CNN step has a
mini-batch size of 16 images. The RPN step and Fast R-
CNN step are both trained for 240k iterations with a learn-
ing rate of 0.001 and then for 80k iterations with 0.0001.

Table 8 shows the results on the MS COCO validation
set. ResNet-101 has a 6% increase of mAP@][.5, .95] over
VGG-16, which is a 28% relative improvement, solely con-
tributed by the features learned by the better network. Re-
markably, the mAP@[.5, .95]’s absolute increase (6.0%) is
nearly as big as mAP@.5’s (6.9%). This suggests that a
deeper network can improve both recognition and localiza-
tion.

B. Object Detection Improvements

For completeness, we report the improvements made for
the competitions. These improvements are based on deep
features and thus should benefit from residual learning.

MS COCO

Box refinement. Our box refinement partially follows the it-
erative localization in [6]. In Faster R-CNN, the final output
is a regressed box that is different from its proposal box. So
for inference, we pool a new feature from the regressed box
and obtain a new classification score and a new regressed
box. We combine these 300 new predictions with the orig-
inal 300 predictions. Non-maximum suppression (NMS) is
applied on the union set of predicted boxes using an loU
threshold of 0.3 [8], followed by box voting [6]. Box re-
finement improves mAP by about 2 points (Table 9).

Global context. We combine global context in the Fast
R-CNN step. Given the full-image conv feature map, we
pool a feature by global Spatial Pyramid Pooling [12] (with
a “single-level” pyramid) which can be implemented as
“Rol” pooling using the entire image’s bounding box as the
Rol. This pooled feature is fed into the post-Rol layers to
obtain a global context feature. This global feature is con-
catenated with the original per-region feature, followed by
the sibling classification and box regression layers. This
new structure is trained end-to-end. Global context im-
proves mAP@.5 by about 1 point (Table 9).

Multi-scale testing. In the above, all results are obtained by
single-scale training/testing as in [32], where the image’s
shorter side is s = 600 pixels. Multi-scale training/testing
has been developed in [12, 7] by selecting a scale from a
feature pyramid, and in [33] by using maxout layers. In
our current implementation, we have performed multi-scale
testing following [33]; we have not performed multi-scale
training because of limited time. In addition, we have per-
formed multi-scale testing only for the Fast R-CNN step
(but not yet for the RPN step). With a trained model, we
compute conv feature maps on an image pyramid, where the
image’s shorter sides are s € {200,400, 600, 800, 1000}.



training data COCO train COCO trainval
test data COCO val COCO test-dev
mAP @.5 @[.5, .95] @.5 @[.5, .95]
baseline Faster R-CNN (VGG-16) 41.5 21.2

baseline Faster R-CNN (ResNet-101) 48.4 27.2

+box refinement 49.9 29.9

+context 51.1 30.0 533 32.2
+multi-scale testing 53.8 32.5 55.7 34.9
ensemble 59.0 374

Table 9. Object detection improvements on MS COCO using Faster R-CNN and ResNet-101.

system net data MAP | areo  bike bird boat bottle bus car cat  chair cow table dog horse mbike person plant sheep sofa train  tv
baseline VGG-16 07+12 73.2 1765 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
baseline ResNet-101 07+12 76.4 |79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 838.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
baseline+++ | ResNet-101 | COCO+07+12 | 85.6 [90.0 89.6 87.8 80.8 76.1 89.9 89.9 89.6 75.5 90.0 80.7 89.6 90.3 89.1 88.7 65.4 88.1 85.6 89.0 86.8

Table 10. Detection results on the PASCAL VOC 2007 test set. The baseline is the Faster R-CNN system. The system “baseline+++"

include box refinement, context, and multi-scale testing in Table 9.

system net data mMAP | areo  bike bird boat bottle bus car cat  chair cow table dog horse mbike person plant sheep sofa train  tv
baseline VGG-16 07++12 70.4 [84.9 79.8 74.3 539 49.8 77.5 759 88.5 45.6 77.1 553 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
baseline ResNet-101 07++12 73.8 [86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
baseline+++| ResNet-101 | COCO+07++12 | 83.8 |92.1 88.4 84.8 75.9 71.4 86.3 87.8 94.2 66.8 89.4 69.2 93.9 91.9 90.9 89.6 67.9 88.2 76.8 90.3 80.0

Table 11. Detection results on the

PASCAL VOC 2012 test set (http://host.robots.ox.ac.uk:8080/1leaderboard/

displaylb.php?challengeid=11&compid=4). The baseline is the Faster R-CNN system. The system “baseline+++" include

box refinement, context, and multi-scale testing in Table 9.

We select two adjacent scales from the pyramid following
[33]. Rol pooling and subsequent layers are performed on
the feature maps of these two scales [33], which are merged
by maxout as in [33]. Multi-scale testing improves the mAP
by over 2 points (Table 9).

Using validation data. Next we use the 80k+40k trainval set
for training and the 20k test-dev set for evaluation. The test-
dev set has no publicly available ground truth and the result
is reported by the evaluation server. Under this setting, the
results are an mAP@.5 of 55.7% and an mAP@][.5, .95] of
34.9% (Table 9). This is our single-model result.

Ensemble. In Faster R-CNN, the system is designed to learn
region proposals and also object classifiers, so an ensemble
can be used to boost both tasks. We use an ensemble for
proposing regions, and the union set of proposals are pro-
cessed by an ensemble of per-region classifiers. Table 9
shows our result based on an ensemble of 3 networks. The
mAP is 59.0% and 37.4% on the test-dev set. This result
won the 1st place in the detection task in COCO 2015.

PASCAL VOC

We revisit the PASCAL VOC dataset based on the above
model. With the single model on the COCO dataset (55.7%
mAP@.5 in Table 9), we fine-tune this model on the PAS-
CAL VOC sets. The improvements of box refinement, con-
text, and multi-scale testing are also adopted. By doing so
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val2 test
GooglLeNet [44] (ILSVRC’14) - 439
our single model (ILSVRC’15) 60.5 58.8
our ensemble (ILSVRC’15) 63.6 62.1

Table 12. Our results (mAP, %) on the ImageNet detection dataset.
Our detection system is Faster R-CNN [32] with the improvements
in Table 9, using ResNet-101.

we achieve 85.6% mAP on PASCAL VOC 2007 (Table 10)
and 83.8% on PASCAL VOC 2012 (Table 11)°. The result
on PASCAL VOC 2012 is 10 points higher than the previ-
ous state-of-the-art result [6].

ImageNet Detection

The ImageNet Detection (DET) task involves 200 object
categories. The accuracy is evaluated by mAP@.5. Our
object detection algorithm for ImageNet DET is the same
as that for MS COCO in Table 9. The networks are pre-
trained on the 1000-class ImageNet classification set, and
are fine-tuned on the DET data. We split the validation set
into two parts (vall/val2) following [8]. We fine-tune the
detection models using the DET training set and the vall
set. The val2 set is used for validation. We do not use other
ILSVRC 2015 data. Our single model with ResNet-101 has

6http: //host.robots.ox.ac.uk:8080/anonymous/30J40J.html,
submitted on 2015-11-26.
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LOC LOC festing LOC error |classification | top-5 LOC error
method network on GT CLS| network |on predicted CLS

VGG’s [41] | VGG-16 |1-crop| 33.1[41]

RPN ResNet-101 | 1-crop 133

RPN ResNet-101| dense 11.7

RPN ResNet-101| dense ResNet-101 144
RPN+RCNN |ResNet-101 | dense ResNet-101 10.6
RPN+RCNN| ensemble | dense ensemble 8.9

Table 13. Localization error (%) on the ImageNet validation. In
the column of “LOC error on GT class” ([41]), the ground truth
class is used. In the “testing” column, “l-crop” denotes testing
on a center crop of 224 x224 pixels, “dense” denotes dense (fully
convolutional) and multi-scale testing.

58.8% mAP and our ensemble of 3 models has 62.1% mAP
on the DET test set (Table 12). This result won the Ist place
in the ImageNet detection task in ILSVRC 2015, surpassing
the second place by 8.5 points (absolute).

C. ImageNet Localization

The ImageNet Localization (LOC) task [36] requires to
classify and localize the objects. Following [40, 41], we
assume that the image-level classifiers are first adopted for
predicting the class labels of an image, and the localiza-
tion algorithm only accounts for predicting bounding boxes
based on the predicted classes. We adopt the “per-class re-
gression” (PCR) strategy [40, 41], learning a bounding box
regressor for each class. We pre-train the networks for Im-
ageNet classification and then fine-tune them for localiza-
tion. We train networks on the provided 1000-class Ima-
geNet training set.

Our localization algorithm is based on the RPN frame-
work of [32] with a few modifications. Unlike the way in
[32] that is category-agnostic, our RPN for localization is
designed in a per-class form. This RPN ends with two sib-
ling 1x1 convolutional layers for binary classification (cls)
and box regression (reg), as in [32]. The cls and reg layers
are both in a per-class from, in contrast to [32]. Specifi-
cally, the cls layer has a 1000-d output, and each dimension
is binary logistic regression for predicting being or not be-
ing an object class; the reg layer has a 1000x4-d output
consisting of box regressors for 1000 classes. As in [32],
our bounding box regression is with reference to multiple
translation-invariant “anchor” boxes at each position.

As in our ImageNet classification training (Sec. 3.4), we
randomly sample 224x224 crops for data augmentation.
We use a mini-batch size of 256 images for fine-tuning. To
avoid negative samples being dominate, 8 anchors are ran-
domly sampled for each image, where the sampled positive
and negative anchors have a ratio of 1:1 [32]. For testing,
the network is applied on the image fully-convolutionally.

Table 13 compares the localization results. Following
[41], we first perform “oracle” testing using the ground truth
class as the classification prediction. VGG’s paper [41] re-
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method top-5 localization err
val test
OverFeat [40] (ILSVRC’13) 30.0 29.9
GoogLeNet [44] (ILSVRC’14) - 26.7
VGG [41] (ILSVRC’14) 26.9 253
ours (ILSVRC’15) 8.9 9.0

Table 14. Comparisons of localization error (%) on the ImageNet
dataset with state-of-the-art methods.

ports a center-crop error of 33.1% (Table 13) using ground
truth classes. Under the same setting, our RPN method us-
ing ResNet-101 net significantly reduces the center-crop er-
ror to 13.3%. This comparison demonstrates the excellent
performance of our framework. With dense (fully convolu-
tional) and multi-scale testing, our ResNet-101 has an error
of 11.7% using ground truth classes. Using ResNet-101 for
predicting classes (4.6% top-5 classification error, Table 4),
the top-5 localization error is 14.4%.

The above results are only based on the proposal network
(RPN) in Faster R-CNN [32]. One may use the detection
network (Fast R-CNN [7]) in Faster R-CNN to improve the
results. But we notice that on this dataset, one image usually
contains a single dominate object, and the proposal regions
highly overlap with each other and thus have very similar
Rol-pooled features. As a result, the image-centric training
of Fast R-CNN [7] generates samples of small variations,
which may not be desired for stochastic training. Motivated
by this, in our current experiment we use the original R-
CNN [8] that is Rol-centric, in place of Fast R-CNN.

Our R-CNN implementation is as follows. We apply the
per-class RPN trained as above on the training images to
predict bounding boxes for the ground truth class. These
predicted boxes play a role of class-dependent proposals.
For each training image, the highest scored 200 proposals
are extracted as training samples to train an R-CNN classi-
fier. The image region is cropped from a proposal, warped
to 224 x224 pixels, and fed into the classification network
as in R-CNN [8]. The outputs of this network consist of two
sibling fc layers for cls and reg, also in a per-class form.
This R-CNN network is fine-tuned on the training set us-
ing a mini-batch size of 256 in the Rol-centric fashion. For
testing, the RPN generates the highest scored 200 proposals
for each predicted class, and the R-CNN network is used to
update these proposals’ scores and box positions.

This method reduces the top-5 localization error to
10.6% (Table 13). This is our single-model result on the
validation set. Using an ensemble of networks for both clas-
sification and localization, we achieve a top-5 localization
error of 9.0% on the test set. This number significantly out-
performs the ILSVRC 14 results (Table 14), showing a 64%
relative reduction of error. This result won the 1st place in
the ImageNet localization task in ILSVRC 2015.



