8 March 2017 Signal Recovery Paul E. Hand hand@rice.edu

HW 3

Due: 28 March 2017 in class

1. Let $x_0 \in \mathbb{R}^m$. Let $A \in \mathbb{R}^{n \times m}$ with $m \ge n$ have rank n. Let $b \in \mathbb{R}^n$. Use Lagrange multipliers to find an analytical expression for the solution to

$$\min_{x \in \mathbb{R}^m} \|x - x_0\|_2 \text{ subject to } Ax = b.$$

2. Let $X_0 \in \mathbb{R}^{n \times n}$ and $X_0 \succeq 0$. Let $A_i \in \mathbb{R}^{n \times n}$ for $i = 1 \dots m$. Find the dual program to

min 0 subject to
$$X \succeq 0, \langle A_i, X \rangle = \langle A_i, X_0 \rangle, i = 1 \dots m$$
.

Show all the work involved in computing the infimum of the augmented Lagrangian. That is to say, your answer should derive the dual feasibility conditions instead of simply stating them.

- 3. Consider the space of $n \times n$ real symmetric matrices. Let $I_S(X) = \begin{cases} 0 & X \in S, \\ \infty & \text{otherwise.} \end{cases}$ Show that $\partial I_{\{X \succeq 0\}}(0) + \partial I_{\{X_{11}=0\}}(0) \neq \partial I_{\{X \succeq 0, X_{11}=0\}}(0).$
- 4. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x) = |x_1 x_2|$ for $x = (x_1, x_2)$. What is $\partial f(x)$? Make sure your answer is presented for all possible values of $x \in \mathbb{R}^2$.
 - (b) Let $Z \in \mathbb{R}^{nm}$. Let z_i be the *i*th block of size *n* of *Z*. That is $z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_m \end{pmatrix}$, where $z_i \in \mathbb{R}^n$. Let $f(Z) = \sum_{i=1}^m \sum_{j=1}^m ||z_i z_j||_2$. What is $\partial f(Z)$? Make sure your answer is presented for all possible values of $Z \in \mathbb{R}^{nm}$.