20 January 2017 Analysis I Paul E. Hand hand@rice.edu

HW 1

Due: 31 January 2017 in class

1. If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, compute $\mathbb{E}\Big[|X - \mu|\Big]$.

2. Let $X_i \sim \mathcal{N}(\mu, \sigma^2)$ for $i = 1 \dots n$. Suppose you estimate μ and σ by

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})^2.$$
(1)

Compute $\mathbb{E}[\hat{\sigma}^2]$ and show that it does not equal σ^2 . Modify the formula for $\hat{\sigma}$ so that its expected value is σ^2 .

- 3. Let $X \sim \text{Exponential}(\lambda)$. Compute the mean μ and standard deviation σ of X. Find $\mathbb{P}(|X \mu| \ge k\sigma)$. How does this compare to the bound you get from Chebyshev's Inequality.
- 4. Let $X_i \sim \text{Bernoulli}(p)$ for $i = 1 \dots n$. Find a reasonable bound for $\mathbb{P}(\frac{1}{n} \sum_{i=1}^n X_i < p/2)$ for large n and small p.
- 5. Let $X_i \sim \text{Exponential}(\lambda)$ for $i = 1 \dots n$. Roughly how big will $\max_{i \in [n]} X_i$ be (for arbitrary λ and large n)? Create and prove a probability bound that shows that it is improbable for the maximum of these random variables to be much larger than your answer.
- 6. Let $X_i \sim \text{Uniform}([0, L])$ for $i = 1 \dots n$. Roughly how big will $\min_{i \in [n]} X_i$ be (for arbitrary L > 0 and large n)? Create and prove a probability bound that shows that it is improbable for the minimum of these random variables to be much smaller than your answer.
- 7. Let $X, Y \sim \mathcal{N}(0, 1)$ be independent. Show that XY follows the same distribution as the difference of two independent χ_1^2 random variables. Hint: Expand out $(X + Y)^2 (X Y)^2$.