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1. Let C2
0 ([0, 1]) be the set of twice-continuously-differentiable functions f : [0, 1]→ R such that f(0) =

f(1) = 0. Define

‖f‖a = sup
x
|f(x)|+ |f ′(x)|+ |f ′′(x)|,

‖f‖b = sup
x
|f ′(x)|+ |f ′′(x)|,

‖f‖c = sup
x
|f(x)|+ |f ′′(x)|.

(a) (10 points) Prove that ‖ · ‖a and ‖ · ‖b are equivalent norms.
(b) (10 points) Are ‖ · ‖a and ‖ · ‖c equivalent norms? Prove your answer.

2. (a) (10 points) Provide a counterexample to the following claim: Let K be a collection of sets in a
normed vector space E such that the intersection of every finite subcollection of sets in K is nonempty.
The intersection of all of the sets in K is nonempty.

(b) (10 points) Let K be a collection of compact sets in a normed vector space E such that the intersec-
tion of every finite subcollection of sets in K is nonempty. Prove that the intersection of all of the sets
in K is nonempty.

Hint: Consider building an open cover of a single set within K.

3. (15 points) Show that there exists an open neighborhood U of (1, 1) ∈ R2, and X ∈ C1(U,R) so that
X(1, 1) = 0 and

X(y, z)z + [sinX(y, z)]y + [cosX(y, z)]z = 1

for all (y, z) ∈ U .

4. (20 points) Prove or disprove: {x ∈ `1 |
∑∞

n=1 |xn|n2 ≤ 1} is a compact subset of `1 with respect to
the `1 norm.
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