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Throughout, V is a vector space, as defined in VI.1 of Lang, where you will also
find definitions of linear combination, the vector space R

n, and the vector space
F(S, V ) of functions on a set S with values in a vector space V (Example 8, with
di↵erent notation). Recall that I gave a careful recursive definition of linear combi-
nation in class.

A linear combination is nontrivial if at least one coe�cient is nonzero.

Defn. Suppose S ⇢ V . Then Span(S) denotes the set of all linear combinations of
elements of S:

Span(S) = {c1v1 + ... + ckvk : k 2 Z

+, c1, ..., ck 2 R, v1, ...vk 2 S}

Defn. A set S ⇢ V is linearly dependent if there exists some nontrivial linear
combination of elements of S equal to the zero vector, i.e. for some k 2 Z

+, c1, ..., ck 2
R, v1, ...vk 2 S, with |c1| + |c2| + ... + |ck| > 0,

c1v1 + ... + ckvk = 0.

S is linearly independent if it is not linearly dependent.

Examples:

1. the subset {0} ⇢ V (consisting of the zero vector) is always linearly dependent.
So is any set containing the zero vector.

2. in the vector space R = R

1, the set {1} is linearly independent. However the
set {1, 2} is linearly dependent, since 2 · 1 + (�1) · 2 = 0.
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3. in the vector space R

2, set v1 = (1, 0), v2 = (1,�1). Then {v1, v2} is linearly
independent: if c1v1 + c2v2 = (c1 + c2,�c2) = (0, 0), then c1 = c2 = 0.

4. in the vector space R

n, n 2 Z

+, for each k 2 Jn set ek = vector with kth
coordinate = 1, all other coordinates = 0. ek is called the kth standard basis

vector. Any subset of S = {e1, ..., en} is linearly independent.

Lemma 1. Suppose T ⇢ S ⇢ V , and T is linearly dependent. Then S is linearly
dependent.
Proof: The hypothesis supposes the existence of k 2 Z+, t1, ..., tk 2 T, c1, .., ck 2 R

so that
c1t1 + ... + cktk = 0, cj 6= 0 for some j 2 Jk.

However t1, ..., tk 2 S also, so S is linearly dependent. Q.E.D.

Lemma 2. Suppose T ⇢ S ⇢ V , and S is linearly independent. Then T is linearly
independent.
Proof: Else, by Lemma 1, S would be linearly dependent. Q.E.D.

Lemma 3. Suppose T ⇢ V is linearly independent, and t /2 Span(T ). Then T [ {t}
is linearly independent.
Proof: Suppose not: that is, there exist t1, ..., tk 2 T , c, c1, ..., ck 2 R so that

ct + c1t1 + ... + cktk = 0. (1)

Either c 6= 0 or c = 0. In the former case, divide the preceding equation through by
c and rearrange to get

t =
⇣
�c1

c

⌘
t1 + ... +

⇣
�ck

c

⌘
tk ) t 2 Span(T ),

contradicting the second assumption. In the latter case, the linear combination (1)
must be a nontrivial linear combination of elements of T , which contradicts the first
assumption. Q.E.D.

Defn. A finite subset S ⇢ V is a basis of V if and only if (1) S is linearly independent,
and (2) V = Span(S).

Theorem 1. Suppose that S ⇢ V is a basis, and #S = n 2 Z

+. Suppose T ⇢ V ,
and either T is infinite or #T > n. Then T is linearly dependent.
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Proof: Suppose not, that is, that T is linearly independent.
Claim: for each k = 0, ...n, there exists Sn�k ⇢ S, Tk ⇢ T so that #Sn�k = n�k,

#Tk = k, and Sn�k [ Tk is a basis of V . Establish the claim by induction: for k = 0,
S = Sn, T0 = ;, and the claim is just the hypothesis that S is a basis. Suppose
the claim to be true for k < n. Enumerate the members: Sn�k = {v1, .., vn�k}, Tk =
{w1, ..., wk}. Since #Tk = k < n < #T , there exists at least one t 2 T \ Tk. Since
Sn�k [ Tk is a basis, can choose c1, .., cn�k, d1, ..., dk 2 R so that

t = c1v1 + ... + cn�kvn�k + d1w1 + ... + dkwk.

Note that at least one of the cj must be nonzero, else the preceding equation would
show that T is linearly dependent. Renumber the v0s (i.e. compose the enumeration
map Jn�k ! Sn�k with a permutation of Jn�k so that j = n�k. Then you can solve
the above equation for vn�k:

vn�k =

✓
� c1

cn�k

◆
v1 + ...

✓
�cn�k�1

cn�k

◆
vn�k�1

+

✓
�1

cn�k

◆
t +

✓
� d1

cn�k

◆
w1 + ...

✓
� dk

cn�k

◆
wk.

Rename wk+1 = t, set Sn�k�1 = {v1, ..., vn�k�1}, Tk+1 = {w1, ..., wk+1}. These sets
have the right cardinalities, so it remains only to show that Sn�k�1[Tk+1 is a basis. To
see that this set is linearly independent, suppose that for some a1, ..., an�k, b1, ..., bk 2
R,

0 = a1v1 + ... + an�k�1vn�k�1 + b1w1 + ... + bkwk + bk+1wk+1

and substitute the expression given above for wk+1 = t:

= a1v1 + ... + an�k�1vn�k�1 + b1w1 + ... + bkwk+

bk+1(c1v1 + ... + cn�kvn�k + d1w1 + ... + dkwk)

= (a1 + bk+1c1)v1 + ... + (an�k�1 + bk+1cn�k�1)vn�k�1

+bk+1cn�kvn�k

+(b1 + bk+1d1)w1 + ... + (bk + bk+1dk)wk.

Since Sn�k [ Tk is a basis, all coe�cients in this linear combination must vanish. In
particular, bk+1cn�k = 0. However cn�k 6= 0, so bk+1 = 0, and therefore a1 = ... =
an�k�1 = b1 = ... = bk = 0 also, that is, the linear combination is trivial.
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It’s equally easy to see that Sn�k�1 [ Tk+1 spans V , thus finishing the induction
step and therefore the proof of the claim.

In particular, for k = n we have shown the existence of a basis Tn ⇢ T with
#Tn = n (Tn is a basis all by itself, since S0 = ;). But #T > n, so there is
t 2 T \ Tn. Since t 2 Span(T ), the set Tn [ {t} ⇢ T must be linearly dependent, but
then so must be T , a contradiction. Q.E.D.

Theorem 2 (Main Theorem of Dimension Theory): For any vector space V ,
either

• V has no basis, or

• all bases of V have the same cardinality.

Defn. If V has a basis, then the dimension of V , written dimV , is the cardinality
of any basis. That is, if S is (any) basis of V , then

dimV = #S.

If V has a basis, it is called finite-dimensional. By convention, the trivial vector
space V = {0}, which clearly has no basis, has dimension zero. If V does not have
a basis and contains a nonzero vector, V is called infinite-dimensional.

Theorem 3. Suppose that dimV = n 2 Z

+, and S ⇢ V spans V (that is, V =
Span(S)). Then there exists a basis B of V with B ⇢ S.
Proof: Let

K = {k 2 Z

+ : there exists a linearly independent subset T ⇢ S with #T = k}.

It follows from Theorem 1 that K ⇢ Jn, so K has a maximum member, say m,
hence there is a subset {v1, ..., vm} ⇢ S which is linearly independent. Suppose
{v1, ..., vm} does not span V , then there must exist a w 2 S \ Span({v1, ..., vm}) -
otherwise, S ⇢ Span({v1, ..., vm}), whence V = Span(S) ⇢ Span({v1, ..., vm}). Then
(by Lemma 3) {w, v1, ..., vm} is a linearly independent subset of S, which contradicts
the maximality of m. Conclude that in fact {v1, ..., vm} spans V , so is a basis (and
m = n). Q.E.D.
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