Analysis I
Paul E. Hand
hand@rice.edu

HW 4 [Revised 18 Sep]

Due: Sep 23 in class. Justify all of your work.

1. (Revised) Directly prove that $f(x)=x^{2}$ is Riemann integrable on $[0,1]$ and that the value of the Riemann integral is $1 / 3$. Do this by showing that the supremum of all lower sums equals the infimum of all upper sums equals $1 / 3$.
2. (Revised) Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\log n+\log (n+1)+\cdots+\log (2 n-1)}{n}-\log n
$$

by viewing it as a Riemann sum. Feel free to use elementary techniques of integration to evaluate the value of the resulting integral. Make sure to justify why the limit exists.
3. Let $f(x)= \begin{cases}1 & \text { if } x=1 / n \text { for some } n \in \mathbb{N}, \\ 0 & \text { otherwise } .\end{cases}$

Is f Riemann integrable on $[0,1]$? Prove it. If so, what is the value of the integral.
4. Let $f(x)= \begin{cases}0 & \text { if } x=0, \\ \sin (1 / x) & \text { otherwise. }\end{cases}$

Is f Riemann integrable on $[0,1]$? Prove it.
5. (Revised) Suppose that the sequence of functions $f_{n}(x)$ converges uniformly to $f(x)$ on $[a, b]$. That is, suppose that $\lim _{n \rightarrow \infty} \sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|=0$.
(a) Prove that for all $x, \lim _{n \rightarrow \infty} f_{n}(x)=f(x)$
(b) Prove that f is Riemann integrable and that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

Feel free to use facts like $\left|\int_{a}^{b} g(x) d x\right| \leq \int_{a}^{b}|g(x)| d x$.
6. If you were to present Theorem VI.2.1 (Cauchy Schwarz Inequality) in class, write up the notes of what you would say.

