Brief Notes on Dimension Theory

William W. Symes

October 7, 2010

Throughout, V is a vector space, as defined in VI. 1 of Lang, where you will also find definitions of linear combination, the vector space \mathbf{R}^{n}, and the vector space $\mathcal{F}(S, V)$ of functions on a set S with values in a vector space V (Example 8, with different notation). Recall that I gave a careful recursive definition of linear combination in class.

A linear combination is nontrivial if at least one coefficient is nonzero.
Defn. Suppose $S \subset V$. Then $\operatorname{Span}(S)$ denotes the set of all linear combinations of elements of S :

$$
\operatorname{Span}(S)=\left\{c_{1} v_{1}+\ldots+c_{k} v_{k}: k \in \mathbf{Z}^{+}, c_{1}, \ldots, c_{k} \in \mathbf{R}, v_{1}, \ldots v_{k} \in S\right\}
$$

Defn. A set $S \subset V$ is linearly dependent if there exists some nontrivial linear combination of elements of S equal to the zero vector, i.e. for some $k \in \mathbf{Z}^{+}, c_{1}, \ldots, c_{k} \in$ $\mathbf{R}, v_{1}, \ldots v_{k} \in S$, with $\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{k}\right|>0$,

$$
c_{1} v_{1}+\ldots+c_{k} v_{k}=0
$$

S is linearly independent if it is not linearly dependent.

Examples:

1. the subset $\{0\} \subset V$ (consisting of the zero vector) is always linearly dependent. So is any set containing the zero vector.
2. in the vector space $\mathbf{R}=\mathbf{R}^{1}$, the set $\{1\}$ is linearly independent. However the set $\{1,2\}$ is linearly dependent, since $2 \cdot 1+(-1) \cdot 2=0$.
3. in the vector space \mathbf{R}^{2}, set $v_{1}=(1,0), v_{2}=(1,-1)$. Then $\left\{v_{1}, v_{2}\right\}$ is linearly independent: if $c_{1} v_{1}+c_{2} v_{2}=\left(c_{1}+c_{2},-c_{2}\right)=(0,0)$, then $c_{1}=c_{2}=0$.
4. in the vector space $\mathbf{R}^{n}, n \in \mathbf{Z}^{+}$, for each $k \in J_{n}$ set $e_{k}=$ vector with k th coordinate $=1$, all other coordinates $=0 . e_{k}$ is called the k th standard basis vector. Any subset of $S=\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly independent.

Lemma 1. Suppose $T \subset S \subset V$, and T is linearly dependent. Then S is linearly dependent.
Proof: The hypothesis supposes the existence of $k \in Z^{+}, t_{1}, \ldots, t_{k} \in T, c_{1}, . ., c_{k} \in \mathbf{R}$ so that

$$
c_{1} t_{1}+\ldots+c_{k} t_{k}=0, c_{j} \neq 0 \text { for some } j \in J_{k}
$$

However $t_{1}, \ldots, t_{k} \in S$ also, so S is linearly dependent. Q.E.D.
Lemma 2. Suppose $T \subset S \subset V$, and S is linearly independent. Then T is linearly independent.
Proof: Else, by Lemma $1, S$ would be linearly dependent. Q.E.D.
Lemma 3. Suppose $T \subset V$ is linearly independent, and $t \notin \operatorname{Span}(T)$. Then $T \cup\{t\}$ is linearly independent.
Proof: Suppose not: that is, there exist $t_{1}, \ldots, t_{k} \in T, c, c_{1}, \ldots, c_{k} \in \mathbf{R}$ so that

$$
\begin{equation*}
c t+c_{1} t_{1}+\ldots+c_{k} t_{k}=0 . \tag{1}
\end{equation*}
$$

Either $c \neq 0$ or $c=0$. In the former case, divide the preceding equation through by c and rearrange to get

$$
t=\left(-\frac{c_{1}}{c}\right) t_{1}+\ldots+\left(-\frac{c_{k}}{c}\right) t_{k} \Rightarrow t \in \operatorname{Span}(T)
$$

contradicting the second assumption. In the latter case, the linear combination (1) must be a nontrivial linear combination of elements of T, which contradicts the first assumption. Q.E.D.

Defn. A finite subset $S \subset V$ is a basis of V if and only if (1) S is linearly independent, and (2) $V=\operatorname{Span}(S)$.

Theorem 1. Suppose that $S \subset V$ is a basis, and $\# S=n \in \mathbf{Z}^{+}$. Suppose $T \subset V$, and either T is infinite or $\# T>n$. Then T is linearly dependent.

Proof: Suppose not, that is, that T is linearly independent.
Claim: for each $k=0, \ldots n$, there exists $S_{n-k} \subset S, T_{k} \subset T$ so that $\# S_{n-k}=n-k$, $\# T_{k}=k$, and $S_{n-k} \cup T_{k}$ is a basis of V. Establish the claim by induction: for $k=0$, $S=S_{n}, T_{0}=\emptyset$, and the claim is just the hypothesis that S is a basis. Suppose the claim to be true for $k<n$. Enumerate the members: $S_{n-k}=\left\{v_{1}, . ., v_{n-k}\right\}, T_{k}=$ $\left\{w_{1}, \ldots, w_{k}\right\}$. Since $\# T_{k}=k<n<\# T$, there exists at least one $t \in T \backslash T_{k}$. Since $S_{n-k} \cup T_{k}$ is a basis, can choose $c_{1}, . ., c_{n-k}, d_{1}, \ldots, d_{k} \in \mathbf{R}$ so that

$$
t=c_{1} v_{1}+\ldots+c_{n-k} v_{n-k}+d_{1} w_{1}+\ldots+d_{k} w_{k} .
$$

Note that at least one of the c_{j} must be nonzero, else the preceding equation would show that T is linearly dependent. Renumber the $v^{\prime} s$ (i.e. compose the enumeration map $J_{n-k} \rightarrow S_{n-k}$ with a permutation of J_{n-k} so that $j=n-k$. Then you can solve the above equation for v_{n-k} :

$$
\begin{aligned}
& v_{n-k}=\left(-\frac{c_{1}}{c_{n-k}}\right) v_{1}+\ldots\left(-\frac{c_{n-k-1}}{c_{n-k}}\right) v_{n-k-1} \\
& +\left(\frac{-1}{c_{n-k}}\right) t+\left(-\frac{d_{1}}{c_{n-k}}\right) w_{1}+\ldots\left(-\frac{d_{k}}{c_{n-k}}\right) w_{k} .
\end{aligned}
$$

Rename $w_{k+1}=t$, set $S_{n-k-1}=\left\{v_{1}, \ldots, v_{n-k-1}\right\}, T_{k+1}=\left\{w_{1}, \ldots, w_{k+1}\right\}$. These sets have the right cardinalities, so it remains only to show that $S_{n-k-1} \cup T_{k+1}$ is a basis. To see that this set is linearly independent, suppose that for some $a_{1}, \ldots, a_{n-k}, b_{1}, \ldots, b_{k} \in$ R,

$$
0=a_{1} v_{1}+\ldots+a_{n-k-1} v_{n-k-1}+b_{1} w_{1}+\ldots+b_{k} w_{k}+b_{k+1} w_{k+1}
$$

and substitute the expression given above for $w_{k+1}=t$:

$$
\begin{gathered}
=a_{1} v_{1}+\ldots+a_{n-k-1} v_{n-k-1}+b_{1} w_{1}+\ldots+b_{k} w_{k}+ \\
b_{k+1}\left(c_{1} v_{1}+\ldots+c_{n-k} v_{n-k}+d_{1} w_{1}+\ldots+d_{k} w_{k}\right) \\
=\left(a_{1}+b_{k+1} c_{1}\right) v_{1}+\ldots+\left(a_{n-k-1}+b_{k+1} c_{n-k-1}\right) v_{n-k-1} \\
\quad+b_{k+1} c_{n-k} v_{n-k} \\
\quad+\left(b_{1}+b_{k+1} d_{1}\right) w_{1}+\ldots+\left(b_{k}+b_{k+1} d_{k}\right) w_{k} .
\end{gathered}
$$

Since $S_{n-k} \cup T_{k}$ is a basis, all coefficients in this linear combination must vanish. In particular, $b_{k+1} c_{n-k}=0$. However $c_{n-k} \neq 0$, so $b_{k+1}=0$, and therefore $a_{1}=\ldots=$ $a_{n-k-1}=b_{1}=\ldots=b_{k}=0$ also, that is, the linear combination is trivial.

It's equally easy to see that $S_{n-k-1} \cup T_{k+1}$ spans V, thus finishing the induction step and therefore the proof of the claim.

In particular, for $k=n$ we have shown the existence of a basis $T_{n} \subset T$ with $\# T_{n}=n\left(T_{n}\right.$ is a basis all by itself, since $\left.S_{0}=\emptyset\right)$. But $\# T>n$, so there is $t \in T \backslash T_{n}$. Since $t \in \operatorname{Span}(T)$, the set $T_{n} \cup\{t\} \subset T$ must be linearly dependent, but then so must be T, a contradiction. Q.E.D.

Theorem 2 (Main Theorem of Dimension Theory): For any vector space V, either

- V has no basis, or
- all bases of V have the same cardinality.

Defn. If V has a basis, then the dimension of V, written $\operatorname{dim} V$, is the cardinality of any basis. That is, if S is (any) basis of V, then

$$
\operatorname{dim} V=\# S
$$

If V has a basis, it is called finite-dimensional. By convention, the trivial vector space $V=\{0\}$, which clearly has no basis, has dimension zero. If V does not have a basis and contains a nonzero vector, V is called infinite-dimensional.

Theorem 3. Suppose that $\operatorname{dim} V=n \in \mathbf{Z}^{+}$, and $S \subset V$ spans V (that is, $V=$ $\operatorname{Span}(S))$. Then there exists a basis B of V with $B \subset S$.
Proof: Let

$$
K=\left\{k \in \mathbf{Z}^{+}: \text {there exists a linearly independent subset } T \subset S \text { with } \# T=k\right\} .
$$

It follows from Theorem 1 that $K \subset J_{n}$, so K has a maximum member, say m, hence there is a subset $\left\{v_{1}, \ldots, v_{m}\right\} \subset S$ which is linearly independent. Suppose $\left\{v_{1}, \ldots, v_{m}\right\}$ does not span V, then there must exist a $w \in S \backslash \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{m}\right\}\right)$ otherwise, $S \subset \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{m}\right\}\right)$, whence $V=\operatorname{Span}(S) \subset \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{m}\right\}\right)$. Then (by Lemma 3) $\left\{w, v_{1}, \ldots, v_{m}\right\}$ is a linearly independent subset of S, which contradicts the maximality of m. Conclude that in fact $\left\{v_{1}, \ldots, v_{m}\right\}$ spans V, so is a basis (and $m=n)$. Q.E.D.

