28 August 2014 Analysis I Paul E. Hand hand@rice.edu

Day 2— Summary — Cauchy sequences, Bolzano-Weierstrass, limsup and liminf

- 1. For real numbers, $|x + y| \le |x| + |y|$ and $|x y| \ge |x| |y|$.
- 2. (a) The supremum of a set is the least upper bound of the set. It is denoted by $\sup(S)$. If S is unbounded from above, then $\sup(S) = \infty$.
 - (b) The infimum of a set is its greatest lower bound. It is denoted by $\inf(S)$. If S is unbounded from below, then $\inf(S) = -\infty$.
- 3. The sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, there exists N such that $m, n \ge N \Rightarrow |x_m x_n| < \varepsilon$.
- 4. If $\{x_n\}$ is a Cauchy sequence of \mathbb{R} , then $\{x_n\}$ converges.
- 5. Let $x = \{x_n\}$ be a sequence. A subsequence of x is obtained by keeping (in order) an infinite number of the items x_n and discarding the rest. Two ways to denote a subsequence are $x_{(n)}$ and x_{n_k} .
- 6. Let $\{x_n\}$ be a sequence. The number x is an accumulation point (or point of accumulation) of the sequence if $\forall \varepsilon$ there are infinitely many n such that $|x_n x| < \varepsilon$.
- 7. (Bolzano-Weierstrass Theorem) Every bounded sequence of real numbers has a convergent subsequence.
- 8. (a) lim sup{x_n} is defined as supremum of the accumulation points of {x_n}. A better way to think about it is through lim sup{x_n} = lim_{n→∞} sup_{m≥n} x_n.
 - (b) $\liminf\{x_n\}$ is defined analogously.