25 November 2014 Analysis I Paul E. Hand hand@rice.edu

Day 24 — Summary — Almost everywhere convergence and Lebesgue Integration

- 1. Definition: The functions f and g are equal almost everywhere if $\mu(\{x \mid f(x) \neq g(x)\}) = 0$. For many purposes, these functions should be considered to be equal.
- 2. Definition: $f_n \to f$ almost everywhere if the set of points where f_n does not converge to f has measure zero.
- 3. If f_n is an L^1 -Cauchy sequence of step maps, then there is a subsequence that converges almost everywhere. Further, for any ε , there is a set with measure less than ε outside of which the convergence is uniform.
- 4. Definition: A simple function is a function that adopts finitely many values: $\phi(x) = \sum_{n=1}^{N} a_n \mathbf{1}_{E_n}$.
- 5. Define the Lebesgue integral of a nonnegative simple function ϕ as $\int_{\mathbb{R}} f d\mu = \sum_{n=1}^{N} a_n \mu(E_n)$.
- 6. Define the Lebesgue integral of a nonnegative measurable function f as

$$\int_{\mathbb{R}} f d\mu = \sup \left\{ \int_{\mathbb{R}} \phi d\mu \ \bigg| \ \phi \text{ simple, } 0 \le \phi \le f \right\}$$

7. Define the Lebesgue integral of a not-necessarily-nonnegative function $f = f^+ - f^-$, where f^+ and f^- are both nonnegative, as

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu,$$

provided both integrals on the right hand side are not infinite.