Day 1— Summary — Real Numbers

- 1. Let \mathbb{N} be the natural numbers, \mathbb{Z} be the integers, \mathbb{Q} be the rationals, and \mathbb{R} be the reals.
- 2. If $x \in \mathbb{Q}$, then x = n/m, for $n, m \in \mathbb{Z}$ and $m \neq 0$.
- 3. A real number can be defined as an equivalence class of Cauchy sequences of rationals.
- 4. Some axioms of real numbers:
 - (a) $(x+y)+z=x+(y+z) \ \forall x,y,z\in\mathbb{R}$ (additive associativity)
 - (b) $0 + x = x + 0 \ \forall x \in \mathbb{R}$ (additive identity)
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x + y = 0 \text{ (additive inverse)}$
 - (d) $\forall x, y \in R, x + y = y + x$ (additive commutativity)
 - (e) $(xy)z = x(yz) \ \forall x, y, z \in \mathbb{R}$ (multiplicative associativity)
 - (f) $1x = x \ \forall x \in \mathbb{R}$ (multiplicative identity)
 - (g) $\forall x \neq 0, \exists y \text{ such that } yx = 1 \text{ (multiplicative inverse)}$
 - (h) $xy = yx \ \forall x, y \in \mathbb{R}$ (multiplicative commutativity)
 - (i) $x(y+z) = xy + xz \ \forall x, y, z \in \mathbb{R}$ (distributivity)
 - (j) Every non-empty set of reals which is bounded from above has a least upper bound. Every non-empty set of reals which is bounded from below has a greatest lower bound. (Completeness axiom)

5. Properties of the reals

- (a) Archimedian property: If $0 \le x \le 1/n \ \forall n \in \mathbb{N}$, then x = 0
- (b) Density of rationals within the reals: For all $x \in \mathbb{R}$ and $\varepsilon > 0$, there exists $q \in \mathbb{Q}$ such that $|q x| < \varepsilon$.
- (c) Between two distinct rationals, there is a real. Between two distinct reals, there is a rational.
- 6. Sequences of real numbers
 - (a) The sequence $\{x_n\}_{n=1}^{\infty}$ converges if $\exists a \in \mathbb{R}$ such that all $\varepsilon > 0 \exists N$ such that for all $n \geq N$, $|x_n a| < \varepsilon$.
 - (b) A bounded monotonic sequence converges.