26 August 2014
Analysis I
Paul E. Hand
hand@rice.edu

Day 1-Summary - Real Numbers

1. Let \mathbb{N} be the natural numbers, \mathbb{Z} be the integers, \mathbb{Q} be the rationals, and \mathbb{R} be the reals.
2. If $x \in \mathbb{Q}$, then $x=n / m$, for $n, m \in \mathbb{Z}$ and $m \neq 0$.
3. A real number can be defined as an equivalence class of Cauchy sequences of rationals.
4. Some axioms of real numbers:
(a) $(x+y)+z=x+(y+z) \forall x, y, z \in \mathbb{R}$ (additive associativity)
(b) $0+x=x+0 \forall x \in \mathbb{R}$ (additive identity)
(c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $x+y=0$ (additive inverse)
(d) $\forall x, y \in R, x+y=y+x$ (additive commutativity)
(e) $(x y) z=x(y z) \forall x, y, z \in \mathbb{R}$ (multiplicative associativity)
(f) $1 x=x \forall x \in \mathbb{R}$ (multiplicative identity)
(g) $\forall x \neq 0, \exists y$ such that $y x=1$ (multiplicative inverse)
(h) $x y=y x \forall x, y \in \mathbb{R}$ (multiplicative commutativity)
(i) $x(y+z)=x y+x z \forall x, y, z \in \mathbb{R}$ (distributivity)
(j) Every non-empty set of reals which is bounded from above has a least upper bound. Every nonempty set of reals which is bounded from below has a greatest lower bound. (Completeness axiom)
5. Properties of the reals
(a) Archimedian property: If $0 \leq x \leq 1 / n \forall n \in \mathbb{N}$, then $x=0$
(b) Density of rationals within the reals: For all $x \in \mathbb{R}$ and $\varepsilon>0$, there exists $q \in \mathbb{Q}$ such that $|q-x|<\varepsilon$.
(c) Between two distinct rationals, there is a real. Between two distinct reals, there is a rational.
6. Sequences of real numbers
(a) The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges if $\exists a \in \mathbb{R}$ such that all $\varepsilon>0 \exists N$ such that for all $n \geq N$, $\left|x_{n}-a\right|<\varepsilon$.
(b) A bounded monotonic sequence converges.
