16 October 2014 Analysis I Paul E. Hand hand@rice.edu

Day 13 — Summary — Dimensionality of vector spaces

- 1. Definition: A collection of vectors is linearly dependent if there is a nontrivial linear combination that equals the zero vector.
- 2. Definition: The span of a collection of vectors is the set of all finite linear combinations of those vectors.
- 3. Definition: A finite collection of vectors in the space V is a basis if the collection is linearly independent and spans the whole space.
- 4. If a space has a basis of n elements, than any collection of more than n elements is linearly dependent.
- 5. If a space has a finite basis, then any collection of vectors that spans V contains a basis.
- 6. If a space has a basis of n elements, then any collection of n linearly independent elements is a basis.
- 7. Definition: The dimensionality of a space is the cardinality of any basis. If there is no (finite) basis, then the dimensionality is infinite.

16 October 2014 Analysis I Paul E. Hand hand@rice.edu

Day 13 — Summary — Dimensionality of vector spaces

- 1. Definition: A collection of vectors is linearly dependent if there is a nontrivial linear combination that equals the zero vector.
- 2. Definition: The span of a collection of vectors is the set of all finite linear combinations of those vectors.
- 3. Definition: A finite collection of vectors in the space V is a basis if the collection is linearly independent and spans the whole space.
- 4. If a space has a basis of n elements, than any collection of more than n elements is linearly dependent.
- 5. If a space has a finite basis, then any collection of vectors that spans V contains a basis.
- 6. If a space has a basis of n elements, then any collection of n linearly independent elements is a basis.
- 7. Definition: The dimensionality of a space is the cardinality of any basis. If there is no (finite) basis, then the dimensionality is infinite.

1.)
$$X_i \in V$$
 $i = 1 - - n$
 $\{X_i^3\}$ lin. independent if $O = \sum_{i=1}^n c_i X_i \implies c_i = 0 + i$

Example 8 (1) (-1) (3) are linearly dependent as
$$\frac{5}{2}(\frac{1}{1}) - \frac{1}{2}(\frac{1}{-1}) - \binom{2}{3} = 0$$

2) ScV (finite or infinite)

Span (S)= { C, V, +... + C, Vn | ke Z, C, c, elR, V, es}

set of elements reachable as lin. ambos or 5.

3) If 5 lin. indep and Span(S)=V then 5 is basis.

Standard basis of \mathbb{R}^3 is $\{(1_10_10), (0_11_10), (0_10_11)\}$ G_1 G_2 G_3

Example: A basis for span (i),(i),(i) is $\{(i),(i)\}$

Let V have a basis et n elements.

Any SeV that spans V contains a basis.

Proof: Consider $K=\{k\in\mathbb{Z}^t\mid \text{ there is a }k\text{-elemal lin indep subseter }S\}$ If $k\in K$, $k\in N$. (by (4))

There is a Maximal k, call it m.

Let $\{v_1,\dots v_m\}$ be an $\lim_{n\to\infty} I_n = I_n \log S_n \log I_n + I_n \log S_n \log I_n \log I_n$

Then $\{V_1,...,V_m, w\}$ is $\lim_{n\to\infty} \operatorname{Indep}$.

If not, let $C_0w+C_1V_1+...+C_mV_m=0$. Eith $C_0=0$ or $C_0\neq 0$.

If $C_0=0$, then $C_1....C_m=0$ by #)

If $C_0\neq 0$, then $w=-\frac{C_1}{C_0}V_1....-\frac{C_m}{C_0}V_m$, so $w\in Span V_1....V_m$, contains

we this has a sa EV,-...Vm, w? that is lin indep,

contradicty in being max of K.

7期)

Examples of finite dim space IR^n \S polynomials of degree \S n \S

Examples of ∞ dim spaces

200 L° 15P5∞ 15P5∞

. C [aib]
polynomials