16 October 2014
Analysis I

Paul E. Hand
hand @rice.edu

Day 13 — Summary — Dimensionality of vector spaces

1. Definition: A collection of vectors is linearly dependent if there is a nontrivial linear combination that
equals the zero vector.

2. Definition: The span of a collection of vectors is the set of all finite linear combinations of those vectors.

3. Definition: A finite collection of vectors in the space V is a basis if the collection is linearly independent
and spans the whole space.

4. If a space has a basis of n elements, than any collection of more than n elements is linearly dependent.
5. If a space has a finite basis, then any collection of vectors that spans V' contains a basis.
6. If a space has a basis of n elements, then any collection of n linearly independent elements is a basis.

7. Definition: The dimensionality of a space is the cardinality of any basis. If there is no (finite) basis,
then the dimensionality is infinite.
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