Name:

2 May 2013
18.085

Paul E. Hand
hand@math.mit.edu

Quiz 3 Practice

1. Consider $\frac{d y}{d t}=-y^{2}$. Let y_{n} be the computed value of $y(n \Delta t)$. Write out an explicit formula for y_{n+1} in terms of y_{n} using
(a) Forward Euler
(b) Backward Euler
(c) Trapezoidal rule
2. Find values of c_{0}, c_{1}, c_{2} such that $c_{0} u(0)+c_{1} u(\Delta x)+c_{2} u(2 \Delta x)$ is a first order approximation of $u^{\prime \prime}(0)$.
3. Consider the 2π periodic boundary value problem:

$$
\begin{aligned}
-\frac{d}{d x}\left(\rho(x) \frac{d u}{d x}\right) & =f(x) \\
u(0) & =u(2 \pi) \\
u^{\prime}(0) & =u^{\prime}(2 \pi)
\end{aligned}
$$

Assume $\rho(0)=\rho(2 \pi)$. Show that any solution to this equation satisfies the following weak form:

$$
\int_{0}^{2 \pi} \rho(x) \frac{d u}{d x} \frac{d \phi}{d x} d x=\int_{0}^{2 \pi} f(x) \phi(x) d x \text { for all } 2 \pi \text { periodic } \phi(x)
$$

4. Consider the boundary value problem with Dirichlet boundary conditions:

$$
\begin{aligned}
-\frac{d}{d x}\left(\rho(x) \frac{d u}{d x}\right) & =1 \\
u(0) & =0 \\
u(1) & =0
\end{aligned}
$$

where $\rho(x)= \begin{cases}1 & \text { if } x<1 / 2 \\ 2 & \text { if } x>1 / 2\end{cases}$
(a) Write out the weak form of this boundary value problem
(b) Let $N=3, \Delta x=\frac{1}{4}, x_{i}=i \Delta x$. For $i=1,2,3$, let $\phi_{i}(x)$ be the piecewise linear functions that satisfy $\phi_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$. Write out the linear system that needs to be solved under a finite element method with basis functions $\phi_{1}, \phi_{2}, \phi_{3}$
5. What is the complex Fourier series expansion of $f(x)=1+\sin (4 x)$?
6. What is the solution to

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =e^{4 i x}+e^{-3 i x} \\
u(0) & =u(2 \pi) \\
u^{\prime}(0) & =u^{\prime}(2 \pi)
\end{aligned}
$$

7. Solve

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =\delta\left(x-\frac{L}{3}\right) \\
u(0) & =0 \\
u(L) & =0
\end{aligned}
$$

(a) directly
(b) by a Fourier Sine series
8. The functions $\phi_{n}(x)=\sin \frac{n \pi x}{L}$ for $n=1,2,3, \cdots$ form an orthogonal basis of functions from $x=0$ to $x=L$. This means $f(x)=1$ can be written as a sum of sines. Find the expansion of $f(x)=1$ in this basis.

