Name:

7 March 2013
18.085

Computational Science and Engineering I Paul E. Hand

Quiz 1

Rules: Open notes, open book, closed electronics. Time limit: 90 minutes. Please show all of your work.

1. Let z be a nonzero column vector in \mathbb{R}^{n}. Let $A=z z^{t}$.
(a) (10 points) What is the rank of A ?
(b) (10 points) Show that the null space of A is the set of all vectors perpendicular to z.
2. (20 points) Find an orthonormal basis for the space of points $(x, y, z) \in \mathbb{R}^{3}$ satisfying

$$
x+y+z=0 \text { and }-x+y+2 z=0 .
$$

3. (20 points) Find the rank and null space of B. Specify the null space entirely; do not just state its dimension. Justify your answer completely.

$$
B=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

4. (20 points) Find the LU decomposition of C.

$$
C=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1 \\
-1 & -1 & 1 & 0 & 1 \\
-1 & -1 & -1 & 1 & 1 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)
$$

5. (20 points) A way to find the inverse of a matrix.
(a) (4 points) Suppose B is a 4×4 matrix. For what vector y is $B y=2$ nd column of $B+3$ rd column of B ?
(b) (8 points) Let A be a 4×4 nonsingular matrix. Find the vector b for which the solution to $A x=b$ is the first column of A^{-1}.
(c) (8 points) Inspired by (b), describe a method for finding the inverse of an $n \times n$ matrix. How many floating point operations are needed to implement this method?
Use the fact that an $L U$ factorization of A involves $\sim \frac{2}{3} n^{3}$ floating point operations, and that back substitution of a triangular system involves $\sim n^{2}$ floating point operations.
