Computational Science and Engineering
Amelia Servi
April 29, 2013

Problem Set 5 Solutions

1) (a)

$$
\int_{-\infty}^{x} \delta(y-2) d y
$$

If $x<2$, the region of integration does not include singularity, $\int_{-\infty}^{x} \delta(y-2) d y=0$.
If $x>2$, the region of integration includes the singularity, $\int_{-\infty}^{x} \delta(y-2) d y=1$.
So, $\quad \int_{-\infty}^{x} \delta(y-2) d y=H(x-2)$.

(b)

$$
\int_{-\infty}^{x} \delta(y-3) d y=H(x-3) \text { and } \int_{-\infty}^{x} \delta(y+2) d y=H(x+2)
$$

So,

$$
\int_{-\infty}^{x}\left(\delta(y-3)-\frac{1}{2} \delta(y+2)\right) d y=H(x-3)-\frac{1}{2} H(x+2) .
$$

2) (a) Constant force down: $f=-1$

(b) Slope is 0 on the right, constant except at $x=1 / 2,3 / 4$. Force is up at $x=1 / 2,3 / 4$.

(c) Force is up for $x<1 / 2$, force is down for $x>1 / 2$

To determine that the slope at $\mathrm{x}=0$ equals zero: Integrate both sides from 0 to 1 :

$$
\begin{gathered}
\int_{0}^{1}-\frac{d^{2} u}{d x^{2}}=\int_{0}^{1} f \\
\frac{d u}{d x}(0)-\frac{d u}{d x}(1)=0
\end{gathered}
$$

Since $\frac{d u}{d x}(1)=0, \frac{d u}{d x}(1)=0$ as well.
3)

$$
\begin{gathered}
-\frac{d^{2} u}{d x^{2}}=\sin \frac{\pi x}{L} \\
u(0)=0 \\
u(L)=0
\end{gathered}
$$

Integrating:

$$
u(x)=\frac{L^{2}}{\pi^{2}} \sin \frac{\pi x}{L}+c x+d
$$

$u(0)=0$ means $d=0$
$u(L)=0 \rightarrow u(L)=\frac{L^{2}}{\pi^{2}} \sin \pi+c L=c L=0$ means $c=0$.

Solution:

$$
u(x)=\frac{L^{2}}{\pi^{2}} \sin \frac{\pi x}{L}
$$

4)

$$
\begin{gathered}
-\frac{d^{2} u}{d x^{2}}=\delta(x-L / 2) \\
u(0)=0 \\
u^{\prime}(L)=0
\end{gathered}
$$

Integrating:

$$
\begin{array}{ll}
u(x)=a x+b & \text { for } x<\frac{L}{2} \\
u(x)=c x+d & \text { for } x>\frac{L}{2}
\end{array}
$$

The two sides of the function are linear because $\frac{d^{2} u}{d x^{2}}=0$ away from $\mathrm{x}=\mathrm{L} / 2$. $u(0)=0$ means $b=0, u^{\prime}(L)=0$ means $c=0$.
Now:

$$
\begin{gathered}
u(x)=a x \text { for } x<\frac{L}{2} \\
u(x)=d \text { for } x>\frac{L}{2}
\end{gathered}
$$

Apply continuity at $x=\frac{L}{2}$:

$$
a \frac{L}{2}=d
$$

Apply the jump condition:

$$
\begin{aligned}
& -\left[\frac{d u}{d x}\right]_{\frac{L}{2}}=1 \\
& -(c-a)=1
\end{aligned}
$$

Since $c=0, a=1$. Since $a L / 2=d, d=L / 2$

Solution:

$$
\begin{array}{ll}
u(x)=x & \text { for } x<\frac{L}{2} \\
u(x)=\frac{L}{2} & \text { for } x>\frac{L}{2}
\end{array}
$$

5) (a) i)

$$
\begin{gathered}
\frac{y_{n+1}-y_{n}}{\Delta t}=A y_{n} \\
y_{n+1}=y_{n}+A \Delta t y_{n} \\
y_{n+1}=(I+A \Delta t) y_{n}
\end{gathered}
$$

ii)

$$
\begin{gathered}
\frac{y_{n+1}-y_{n}}{\Delta t}=A y_{n+1} \\
y_{n+1}-A \Delta t y_{n+1}=y_{n} \\
(I-A \Delta t) y_{n+1}=y_{n} \\
y_{n+1}=(I-A \Delta t) \backslash y_{n}
\end{gathered}
$$

iii)

$$
\frac{y_{n+1}-y_{n}}{\Delta t}=\frac{A y_{n+1}+A y_{n}}{2}
$$

$$
y_{n+1}-\frac{\Delta t}{2} A y_{n+1}=y_{n}+\frac{\Delta t}{2} A y_{n}
$$

$$
y_{n+1}=\left(I-A \frac{\Delta t}{2}\right) \backslash\left(I+A \frac{\Delta t}{2}\right) y_{n}
$$

b-d)

```
A=[[-1 0;1 -1];
y0=[1; 0]; %initial y-value, y(0)
dt=0.01; %step size
I=eye(2);
[t, y]=ode45(@(t,y)A*y,[0;1],[1;0]); %arguments: function, timespan, y(0)
y1_forward=(I+A*dt)^(1/(dt))*y0; %where 1/dt is the number of steps to y(1)
y1_trap=((I-A*dt/2)\(I+A*dt/2))^(1/dt)*y0;
y1_ode45=y(end, :)';
```

Results:

y1_forward $=$	y1_trap $=$
0.3660	0.3679
0.3697	0.3679

