18 April 2013
18.085

Computational Science and Engineering I
Paul E. Hand
hand@math.mit.edu

Problem Set 5

Due: $\mathbf{2 5}$ April 2013 in class.

Print or write out any Matlab input and output.

1. (10 points) The Heaviside function $H(x)=\left\{\begin{array}{ll}1 & \text { if } x>0 \\ 0 & \text { if } x<0\end{array}\right.$.
(a) Plot $\int_{-\infty}^{x} \delta(y-2) d y$ as a function of x and express it in terms of Heaviside functions.
(b) Same, but for $\int_{-\infty}^{x}\left(\delta(y-3)-\frac{1}{2} \delta(y+2)\right) d y$
2. (10 points) Without solving analytically, sketch the solution to

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =f(x) \\
u(0) & =0 \\
\frac{d u}{d x}(1) & =0
\end{aligned}
$$

for
(a) $f(x)=-1$
(b) $f(x)=\delta(x-1 / 2)+\delta(x-3 / 4)$
(c) $f(x)= \begin{cases}1 & \text { if } x \leq 1 / 2 \\ -1 & \text { if } x>1 / 2\end{cases}$
3. (10 points) Find the solution to

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =\sin \frac{\pi x}{L} \\
u(0) & =0 \\
u(L) & =0
\end{aligned}
$$

4. (10 points) Find the solution to

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}} & =\delta(x-L / 2) \\
u(0) & =0 \\
\frac{d u}{d x}(L) & =0
\end{aligned}
$$

5. (20 points) Consider

$$
\begin{aligned}
\frac{d y}{d t} & =A y \\
y(0) & =y_{0}
\end{aligned}
$$

where $y(t) \in \mathbb{R}^{2}$ and A is a 2×2 matrix. Let y_{n} be the computed value of y at $t=n \Delta t$.
(a) Write out a Matlab expression to compute y_{n+1} in terms of $y_{n}, A, \Delta t$, the identity matrix I, and the Matlab command " \backslash " for
i. Forward Euler
ii. Backward Euler
iii. Trapezoidal rule
(b) Let $A=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$ and $y(0)=\binom{1}{0}$. Use Matlab to compute $y(1)$ using Forward Euler with $\Delta t=0.01$.
(c) Same as (b), but with Trapezoidal rule.
(d) Same as (b), but use Matlab's built-in 'ode45' command.

