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Problem Set 3 Solutions [Revised]
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Using Gram-Schmidt:
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Using substitution:
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2) (a) Show thatifa > 0 and ac — b? > 0, then 4 = [Z

We show both eigenvalues positive if a > 0 and ac — b2 > 0. Observe ¢ > 0 as otherwiseac — b? < 0.

Result:

IZ] is positive-definite.

Eigenvalues are given by roots at
A—a)(A=c)=b?>=22—-(a+c)A+ac—b?=0.

This is a parabola with minimum value at A = % and a positive value ac — b%? at 1 = 0.
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Three cases:
\ /
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Min value > 0: Roots are complex, matrix is not positive-definite.
Min value = 0, min value <0: Roots are positive and the matrix is positive-definite.
Suffices to show that the minimum value is less than or equal to zero:



Plugin A =aT+Cintof(/1) =22 —(a+c)A+ac— b2
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(b)
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If x3 = 0, then xT Ax reduces to [X1  X2] [Z Z] [x;] = 0.

Therefore B = [Z Z]is also positive-definite.

(c) Find an x such that xTAx < 0.
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For example: x = [—1]
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A is not positive semi-definite.
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Normal equations:
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Condition number of ATA is 222X = = (worse).
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Condition number of R is % = \/;
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(d) Find the best fit line through (-1, 0), (0, 1), (1, 3):
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At = is the nearest point to b.
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5)
(a) Yes, (xxD)T = (xT)TxT = xxT.
(b) The range of A is the line spanned by x. Observe x is an eigenvector of eigenvalue |x|?:

Ax = xxT

x = x(xTx) = x|x|? = 55x
The rank of A is 1. Dimension of the null space is 4. Any vector in the null space is an eigenvector of

eigenvalue 0. Hence we need only find a basis of the null space.

The null space is the set of all vectors perpendicular to the rows of A. All rows are multiples of x7.
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5 variables, 1 constraint.
All solutions are of the form

An eigenbasis is:
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6) (a)
s This script finds the best fit Mth degree polynomial to

y(x) = 1/(1+16x"2) sampled at N equispaced points from -1 to 1, inclusive
It plots the result on a grid 5 times finer than the data samples
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N = 20; % Number of grid points
M = 18; % Degree of polyomial
x = linspace(-1, 1, N)';

y=1 ./ (1L + 16 * x.°2);

A = vander (x);

A = A(:, end-M:end);

u=2=2a\y;

x dense = linspace(-1, 1, 5*N);

A dense = vander (x_dense);

A dense = A dense(:, end-M:end);

figure;plot (x, vy);
hold on;plot(x dense, A dense * u, 'r');



(b) See above code using N=20, M=8.
(c)
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(d)
The 18™ degree polynomial has less residual because all g degree polynomials are also 18" degree
polynomials with zeros for the large powers.

The 18™ degree polynomial is great at approximating the data in the middle of the domain.

The 8" degree polynomial is better at approximating the data near the boundary.



