11 March 2013
18.085

Computational Science and Engineering I
Paul E. Hand
hand@math.mit.edu

Problem Set 3

Due: 21 March 2013 in class.
Unless otherwise stated, feel free to use Matlab's " \backslash " to perform least squares computations. Print or write out the Matlab input and output.

1. (10 points) By hand, find the QR factorization of

$$
A=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

and use it to solve $A x=\left(\begin{array}{l}4 \\ 5 \\ 0\end{array}\right)$
2. (20 points)
(a) Show that $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is positive-definite if $a>0$ and $a c-b^{2}>0$.
(b) If $A=\left(\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right)$ is positive semi-definite, show that $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ is positive semi-definite.
(c) Is $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$ positive semi-definite? Justify your answer.
3. (20 points) Consider the least squares problem: $\min _{u}\|A u-b\|^{2}$, where

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1
\end{array}\right) \text { and } b=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)
$$

(a) Form the normal equations and solve for the minimizer \hat{u} by hand.
(b) Find the reduced QR factorization, $A=\tilde{Q} \tilde{R}$, by hand. Use it to solve for the minimizer \hat{u}.
(c) Read off the condition numbers of $A^{t} A$ (from part a) and \tilde{R} (from part b)? Which one is worse?
(d) What best-fit problem does this least squares problem correspond to? Sketch the data points and the best-fit curve.
4. (10 points) Find the nearest point to $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\right)^{t}$ on the hyperplane spanned by

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1 \\
-1
\end{array}\right) .
$$

5. (10 points) Let $x=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$.
(a) Is $A=x x^{t}$ symmetric?
(b) Find a basis of eigenvectors of $A=x x^{t}$. What are the corresponding eigenvalues? You do not need to make the basis orthonormal.
Hint: Think about the range and null space of $x x^{t}$. Think about how null spaces are related to eigenvectors/eigenvalues. Do not try to use the determinant formula for finding eigenvalues.
6. (20 points) Let x_{1}, \cdots, x_{20} be 20 equally spaced points from -1 to 1 , inclusive. Let $y_{i}=\frac{1}{1+16 x_{i}^{2}}$.
(a) Find the best-fit 18th degree polynomial to the data points $\left(x_{i}, y_{i}\right)$.
(b) Find the best-fit 8th degree polynomial to the same data points.
(c) Plot the data points and these two polynomials for $-1 \leq x \leq 1$. For the plot, use a fine enough grid spacing that you can tell what is really going on.
(d) Which polynomial has a smaller square residual with the data? Comment on which approximates the data better. Your answer should be somewhat nuanced.
