14 February 2013
Computational Science and Engineering I
Paul E. Hand
hand@math.mit.edu

Problem Set 2

Due: 28 February 2013 in class

1. (10 points) Show that

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & 0 & 1
\end{array}\right) \text { is the inverse of } S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\ell_{21} & 1 & 0 \\
-\ell_{31} & 0 & 1
\end{array}\right)
$$

2. (10 points) By trial and error, find examples of 2 by 2 matrices such that
(a) $A B \neq B A$
(b) $A^{2}=-I$, with only real entries in A
(c) $B^{2}=0$, with no zeros in B
3. (10 points) By hand, factor the matrix $A=L U$, where L is lower triangular, U is upper triangular, and

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

4. (10 points) Use back substitution twice by hand to solve $L U x=f$, where

$$
L=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 2 & 1
\end{array}\right), U=\left(\begin{array}{lll}
2 & 8 & 0 \\
0 & 3 & 5 \\
0 & 0 & 7
\end{array}\right) \text {, and } f=\left(\begin{array}{l}
0 \\
3 \\
6
\end{array}\right)
$$

5. (20 points) Consider a line of n nodes, each connected to its neighbors by a resistor of resistance R. At the first node, potential is set to 1 . At the nth node, potential is set to 0 .

(a) Write down n equations relating $v_{1}, v_{2}, \cdots, v_{n}$. For $n=5$, write out by hand the equations in the form $A x=b$.
(b) Write a Matlab program that, for arbitrary n, forms A and b and solves for x. Solve $A x=b$ in the case of $n=10,000$. What is the computed value of v_{5000} ? Provide 6 digits. How long does it take to solve $A x=b$ in this case? Ignore the time it takes to build the matrix A. Print out your Matlab code.
6. (20 points) Consider the 2 d lattice of points from $(1,1)$ to (n, n). Each is connected to its neighbors by a resistor of resistance R. At the first node $v_{1}=1$. At the last node, $v_{n^{2}}=0$.

(a) In the $n=3$ case, write out by hand the 9 linear equations in the form $A x=b$.
(b) Write a Matlab program that, for arbitrary n, forms A and b and solves for x. Solve $A x=b$ in the case of $n=100$. What is the computed value of v_{50} ? Provide 6 digits. How long does it take to solve $A x=b$ in this case? Ignore the time it takes to build the matrix A. Print out your Matlab code.
(c) Based on the results of 5 b and 6 b : is a one-dimensional problem involving 10,000 nodes more, less, or equally expensive as a two-dimensional problem involving 10,000 nodes?
