
1

Data Compression: Challenging the traditional
algorithms and Moving one step closer to

Entropy
Girik Malik

Battelle Center for Mathematical Medicine,
The Research Institute at Nationwide Children’s Hospital,

The Ohio State University College of Medicine,
Columbus, OH, USA

Labrynthe, New Delhi, India

Abstract—Compression algorithms reduce the redundancy in data representation to decrease the amount of storage
required. Data compression offers an attractive approach to reducing communication costs by using available bandwidth
effectively. Over the last decade there has been an unprecedented explosion in the amount of digital data transmitted
via the Internet, representing text, images, video, sound, computer programs, etc. With this trend expected to continue,
there is a need for algorithms which can most effectively use available network bandwidth by maximally compressing
data. It is also important to consider the security aspects of the data being transmitted while compressing it, as most of
the text data transmitted over the Internet is vulnerable to a multitude of attacks. This paper is focused on addressing
the problem of lossless compression of text files with an added security.

Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding,
arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching
(PPM), and Burrows-Wheeler Transform (BWT) based algorithms. However, none of these methods have been able to
reach the theoretical best-case compression ratio consistently, which implies a need for better algorithms. One
approach for trying to attain better compression ratios is to develop new compression algorithms. An alternative
approach, however, is to develop intelligent, reversible transformations that can be applied to a source text that improve
an existing algorithm’s ability to compress and also offer a sufficient level of security of the transmitted information. The
latter strategy has been explored here. In this paper, we present a method of encoding the data into images and back
and compare it with the compression of RAR and ZIP.

Index Terms—Data Compression, Security, Huffman Coding, Lempel-Ziv (LZ), Algorithm, Compression Ratio, RAR,
ZIP

F

1 INTRODUCTION

THERE has been a lot of excitement in the
field of Data Compression and everybody

has been trying to reach the maximum limit
of Data Compression, i.e., the entropy of Data
[7]. To this day, nobody knows the single best
technique for Data Compression as compres-
sion is highly data specific, some algorithms
work best on some kind of data while the others

• E-mail: girikmalik@gmail.com , malik.192@osu.edu
• Web: http://gmalik9.tk/

work best on some other kind of data. People
have also attempted to solve the problem by
using various tools like deflopt and zipmix in
order to create a hybrid combination of data
compression techniques, by picking the best
compression algorithms for different files and
then combining them together into a single file
which has maximum compression. One such
example that we came across had a file of
700MB compressed to around 50MB. The image
files also are internally compressed, using both
lossy compression algorithms (for JPEG, WebP)
and lossless algorithms (for PNG,PSD, RAW,



2

TIFF) [3]. In this paper we change our approach
of looking at how the data can be compressed
and move one step further to achieve the data
compression which is better than that achieved
by widely used RAR and ZIP algorithms. We
provide a method of lossless data compression
by compressing the data into images (TIFF and
PNG).

2 EXISTING COMPRESSION ALGO-
RITHM

2.1 ZIP Archive
ZIP(.zip) is an archive file format that supports
lossless data compression. The format was orig-
inally created in 1989 by Phil Katz, and was
first implemented in PKWARE, Inc.’s PKZIP
utility[6]

2.1.1 Design
.ZIP files are archives that store multiple files.
.ZIP allows contained files to be compressed
using many different methods, as well as sim-
ply storing a file without compressing it. Each
file is stored separately, allowing different files
in the same archive to be compressed using
different methods. Because the files in a .ZIP
archive are compressed individually it is possi-
ble to extract them, or add new ones, without
applying compression or decompression to the
entire archive. This contrasts with the format of
compressed tar files, for which such random-
access processing is not easily possible.

2.1.2 Structure
A .ZIP file is correctly identified by the presence
of an end of central directory record which is
located at the end of the archive structure in
order to allow the easy appending of new files.
If the end of central directory record indicates
a non-empty archive, the name of each file or
directory within the archive should be spec-
ified in a central directory entry, along with
other metadata about the entry, and an offset
into the .ZIP file, pointing to the actual entry
data. This allows a file listing of the archive to
be performed relatively quickly, as the entire
archive does not have to be read to see the list of

files. The entries within the .ZIP file also include
this information, for redundancy, in a local file
header. Because zip files may be appended to,
only files specified in the central directory at the
end of the file are valid. Scanning a ZIP file for
local file headers is invalid (except in the case
of corrupted archives), as the central directory
may declare that some files have been deleted
and other files have been updated.

2.1.3 Compression Method

The .ZIP File Format Specification documents
the following compression methods: Store (no
compression), Shrink, Reduce (levels 1-4), Im-
plode, Deflate, Deflate64, bzip2, LZMA (EFS),
WavPack, and PPMd. The most commonly used
compression method is DEFLATE, which is
described in IETF RFC 1951[4].

Compression methods mentioned, but not
documented in detail in the specification in-
clude: PKWARE Data Compression Library
(DCL) Implode, IBM TERSE, and IBM LZ77 z
Architecture (PFS). A ”Tokenize” method was
reserved for a third party, but support was
never added.

2.1.4 Encryption

.ZIP supports a simple password-based sym-
metric encryption system which is documented
in the .ZIP specification, and known to be se-
riously flawed. In particular it is vulnerable
to known-plaintext attacks which are in some
cases made worse by poor implementations of
random number generators.[8]

New features including new compression
and encryption (e.g. AES) methods have been
documented in the .ZIP File Format Specifi-
cation since version 5.2. A WinZip-developed
AES-based standard is used also by 7-Zip,
Xceed, and DotNetZip, but some vendors use
other formats.[1] PKWARE SecureZIP also sup-
ports RC2, RC4, DES, Triple DES encryption
methods, Digital Certificate-based encryption
and authentication (X.509), and archive header
encryption.[2]



3

3 THE NEW ALGORITHM

The new algorithm(pkd) supports lossless data
compression and works by converting the data
into image

3.1 Design
The new algorithm allows the files to be com-
pressed using many different methods and also
has the security feature built into it. The first
method is by converting the data into the cor-
responding RGB values and then storing them
onto a figure. The second method works by
converting the data into its corresponding float-
ing point value and then storing it as a float
image, where every pixel holds the floating
point value. The third method is by converting
the file into another described format called
GIPA(.gipa) format, which adds another layer
of encryption for security and then stores in
into the image using the two aforementioned
methods.

3.2 Structure
The image, by default, has to be two dimen-
sional and can be easily represented by a two-
dimensional array or a list of lists. This however
does not apply to the data and the data need not
be present in the same format or can be easily
re-structured. So it becomes necessary to struc-
ture the data in the form of a matrix. One such
method used here is by adding additional bits
to the data in order to make it reach the closest
integer size for the two-dimensional array to be
complete.

3.3 Encryption
The new algorithm supports the encryption
to the fullest as the data generated after the
compression is not any ordinary text data, its a
photograph which cannot be easily encoded us-
ing the normal Pattern Recognition Algorithms
as the data after the pattern recognition will
again be encrypted by either the normal exist-
ing techniques or by another unique technique
called GIPA(.gipa). GIPA currently depends on
the addressing of the characters in the file using
a variable-length dictionary, which is not fixed
and changes dynamically with the file.

4 THE CONVERSION TO RGB
The first method of compression is the con-
version of the Data to RGB. In this method,
the data is read character by character and
stored into an array where each element of
the array represents a single data character.
The elements are then converted to their cor-
responding ASCII Value. In the next step, the
data, in form of ASCII values, is clubbed into
tuples of size 3, where each entry of the tu-
ple corresponds to the individual Red, Green
and Blue values of the RGB respectively. This
reduces the data by almost 1

3

rd of the original
size in terms of the tuples. The tuples are then
stored to the image file pixel by pixel. It can
also be written as a matrix directly, reducing
the computation time.

4.1 Analysis
As previously mentioned, the reshaping of the
data into a matrix of Red, Green and Blue val-
ues, reduces the size to almost 1

3

rd of the original
data. There is no such best image format for
holding the data but in general there is a race
between JPEG(.jpeg or .jpg) and PNG(.png),
where one outperforms the other based on the
type of data. Then comes GIF(.gif), following
which is TIFF(.tiff or .tif). In this case, the top
performing ones, i.e., the JPEG and PNG file
formats outperform both 7ZIP(.7z) and RAR
compression whereas the second best of them
is unable to perform better than ZIP archive
which follows the best one and is followed by
the second best image format. Another interest-
ing thing to mention would be the comparison
of various colours of the pixel and their respec-
tive file sizes. A block of 146x150 pixels was
taken for each of the colours and it was found
that the block with Green colour occupied the
least space while the one with Red colour occu-
pied most space. Results in Table 1

5 CONVERSION TO FLOAT VALUES

The second method of compression is the con-
version of the Data to Floating point values and
then storing it in an image of 32-bit floating
point [5]. The data in this case need not be



4

TABLE 1
COMPARISON OF VARIOUS COLOURS ON BLOCK OF SIZE

146x150 PIXELS

Colour of Block Size (in bytes)

Green
453

Blue
454

White
513

Black
515

Red
516

grouped into tuples of size 3 and only needs
to be reshaped into a matrix. Floating point
image here should not be confused with High
Dynamic Range (HDR) Imaging[9].

5.1 Analysis

The analysis for this particular algorithm was
done with a matrix of 3000x3000 floating point
numbers (upto 8 places of decimal) and it can
hold data correctly upto 16 places of decimal.
The image file format for storage in this case
is TIFF as the other formats are inefficient for
holding floating point values but the figure can
be converted to GIF if required and can still be
mapped to the original image. The compression
achieved in this case is much better and faster
for large data than the traditional ZIP, RAR and
7Z, in which 7Z is the best but slowest of them
all.

6 RESULTS

The book A Brief History of Time by Stephen
Hawking was appended nine time, one after
another, in text format along with images. The
images used here were not in the jpeg format,
they were as well compressed by encoding
them to base64, a method generally used for
viewing images over the internet. The file size
came out to be 12.6MB.

Another file was converted into GIPA for-
mat, sized 113KB. The plain text file of which
was sized 18KB and contained the text Hi this is
just an IT Project 624 times.

The results are not fixed for any particular
file format and different file formats provide

different compressions. In some cases JPEG
proves better, while in some other cases PNG
provides a better compression. Another inher-
ent feature in this method is data security.
The images can be displayed publicly and dis-
tributed freely, people can easily see the images
without any additional softwares but cannot
decode it easily. It is one of the few algorithms
that provide both encryption as well as com-
pression. The results are compared below.

6.1 RGB Method
The book, A Brief History of Time appended
nine times, one after another was converted
first. The best compression was achieved by
JPEG while the worst performance was that of
TIFF, the other ones being in between. When
compressed the same file using the existing al-
gorithms of RAR and ZIP, the best compression
was achieved by 7Z while the worst was that of
ZIP.

Further, the conversion of GIPA file of plain
text, as mentioned above, was best compressed
in JPEG, while the worst performance was that
of TIFF. It is quite evident that there are some
repeating patterns in the figures of the GIPA
files, which can be further compressed using
some standard pattern recognition algorithms
and combining them with machine learning.
In both the cases, the conversion to JPEG gave
the best compression, even better than ZIP and
RAR, but the conversion to JPEG comes with
an added overhead of loosing a few bits of
information due to its inner structure and how
it is stored on the disk. Even leaving out the
lossy storage of JPEG, the second best storage of
PNG gives a significant amount of compression
which is comparable and in some cases even
better than the existing algorithms. The results
are summarised in Tables 2 and 3. The com-
pressed photographs of the book are given in
Figure 1 and 2. The results for the compressed
GIPA file are given in Figure 3 and 4. The GIF
and TIFF of both could not be attached because
of restrictions in LATEX.

6.2 Float Method
The Float method of compression was applied
to a random matrix of dimension 500x500 con-



5

TABLE 2
COMPARISON OF VARIOUS METHODS OF COMPRESSION

APPLIED TO THE BOOK A BRIEF HISTORY OF TIME

Type of File Size (in kilobytes)
Original 13000
JPEG 1309
GIF 4893
PNG 10915
TIFF 12970
7Z 876
RAR 916
ZIP 8423

TABLE 3
COMPARISON OF VARIOUS METHODS OF COMPRESSION

APPLIED TO THE GIPA FILE FORMAT

Type of File Size (in kilobytes)
Original 113
JPEG 6
PNG 22
GIF 44
TIFF 114
7Z 18
RAR 33
ZIP 34

Fig. 1. Book Compressed in JPEG

sisting of floating point numbers upto 12 places
of decimal. The numbers when written to a
file in raw format occupy 5127KB while the
compression algorithm described, compresses
it to 976KB in TIFF format. The floating point
images could be compressed to only TIFF for-
mat as the other formats cannot hold data in
floating point numbers. The numbers taken
in the matrix were in the range 0,1, but the
method has also been tested for other greater

Fig. 2. Book Compressed in PNG

Fig. 3. GIPA file Compressed in JPEG

Fig. 4. GIPA file Compressed in PNG

numbers. The new algorithm pkd clearly out-



6

TABLE 4
COMPARISON OF VARIOUS METHODS OF COMPRESSION

APPLIED TO THE FLOATING POINT MATRIX OF 500x500

Type of File Size (in kilobytes)
Original 5127
TIFF 976
7Z 2021
RAR 2223
ZIP 2180

Fig. 5. Floating Point Matrix of 500x500 compressed in TIFF
(Image in JPEG)

performs the existing algorithms by a large
margin. The results are summarized in Table
4 and the image(converted to JPEG because of
LATEX graphics issues) is shown in Figure 5.

7 BITWISE COMPRESSION ALGORITHM

Another half developed algorithm presented
here is the Bitwise Compression Algorithm. The
algorithm is not yet fully developed, and needs
more research and some advanced mathematics
applied to it, but a basic idea is presented here.
The idea is inspired from the Electrical Domain,
keeping multiplexers in mind. Multiplexers are
electronic devices which have 2n inputs (n 6= 0)
and n selection bits. The selection bits are given
binary equivalent inputs, called the selection
bits and the output is chosen according to the
logic of selection bits.

The algorithm described here is inspired
from the idea of selection bits of a Multiplexer.
The idea is to maintain a single string of n
bits for some or all the data. The data is then

decoded according to the selection bits given.
The selection string is applied to the longer
string with some logical or other operation to
get back the particular part of data, which could
generally be a word, a character or a small
string. We are still quite far from achieving
such a compression as it is mathematically very
complex and requires furthere developments in
coding theory, that can be applied in order to
come up with a generalized algorithm.

A small example is described here for com-
pressing sequential numbers or some numbers
in a particular range. If the starting number is
235 which is 11101011 in binary, we can start
our selection bit from 0 (00000 in binary), then
by subtracting 1(00001 in binary), we get 234 in
decimal and adding one we get 236. Maintain-
ing the number 235 in integer on any standard
machine would have required 4 Bytes (24bits)
and then maintaining a 1 in integer requires an-
other 4 Bytes, in total we would have required
48bits, which using this algorithm is reduced to
only 13bits.

Using a 5bit selection, we can produce upto
32 numbers on both sides, achieving significant
compression. We might as well increase the
number of bits and store even bigger numbers.
A small demonstration is shown in Table 5

8 CONCLUSION

Comparing the new algorithm(pkd) with the
already existing compression algorithms, used
traditionally, the algorithm pkd described here
is clearly found to be better both in terms of
reduction in size as well as speed. The algo-
rithm also gives as added advantage of data
security due to its multi-level nature. The im-
ages produced by the algorithm can be open
on any computer or mobile device without the
requirement of any additional specific software.
Another added advantage that comes with the
algorithm is that of Data Analysis. The algo-
rithm can easily be used for finding patterns
in the data, something similar to the already
existing heat maps. One such demonstration
has already been done by adding the same
data after one another and an emergent pattern
could be seen from it.



7

TABLE 5
DATA COMPRESSION USING BITWISE COMPRESSION

ALGORITHM BY PERFORMING BITWISE SUBTRACTION
STARTING FROM 235

Selection Bits Number
Binary Decimal Binary Decimal
00000 0 11101011 235
00001 1 11101010 234
00010 2 11101001 233
00011 3 11101000 232
00100 4 11100111 231
00101 5 11100110 230
00110 6 11100101 229
00111 7 11100100 228
01000 8 11100011 227
01001 9 11100010 226
01010 10 11100001 225
01011 11 11100000 224
01100 12 11011111 223
01101 13 11011110 222
01110 14 11011101 221
01111 15 11011100 220
10000 16 11011011 219
10001 17 11011010 218
10010 18 11011001 217
10011 19 11011000 216
10100 20 11010111 215
10101 21 11010110 214
10110 22 11010101 213
10111 23 11010100 212
11000 24 11010011 211
11001 25 11010010 210
11010 26 11010001 209
11011 27 11010000 208
11100 28 11001111 207
11101 29 11001110 206
11110 30 11001101 205
11111 31 11001100 204

APPENDIX A
PSEUDOCODES

A.1 Reshaping Data

The reshaping of the data, as described in the
main paper can be done as follows:

//Assuming the data has already been read, is
stored in a list in tuples or otherwise and length
calculated

Step 1: Calculate square-root of the length of the
list (or number of tuples)

Step 2: Take its integer part in a variable and
assign the next integer to another variable

Step 3: Take their product in a third variable
Step 4: Calculate the difference between the

product and the length of the list

Step 5: If the difference is less than zero, then
increment the first variable(the integer part of square
root) by 1

Step 6: Calculate the new product of the vari-
ables in the third variable again

Step 7: Append the zeros(or any other character)
equal to the difference of product and length of the
list

The list can now be easily reshaped into the
two variables

A.2 Converting Data to RGB
The Data to RGB conversion as described in the
paper

Step 1: Open the file to be read
Setp 2: Read the data from the file and store it

in an array or list character wise
Step 3: Take the elements from the array in

groups of 3 and club them to form a tuple
Step 4: Add additional bits(or tuples) to the

existing list of tuples in order to reshape the matrix
(as described in A.1)

Step 5: Create an empty image of the size of the
matrix in A.1

Step 6: Put the data from the matrix on to the
image (pixel wise or otherwise)

Step 7: Save the image on to the disk

A.3 Converting Data to Float
The Data to 32-bit Floating Point Image conver-
sion as described in the paper

Step 1: Open the file to be read
Setp 2: Read the data from the file and store it

in an array or list character wise
Step 3: Add additional bits to the existing list of

values in order to reshape the matrix (as described
in A.1)

Step 4: Create an empty image of the size of the
matrix in A.1, this time of float type

Step 5: Put the data from the matrix on to the
image (pixel wise or otherwise)

Step 6: Save the image on to the disk

REFERENCES
[1] Aes encryption information: Encryption specification ae-1

and ae-2. http://www.winzip.com/aes info.htm/.
[2] Application note on the .zip file format.

http://www.pkware.com/support/zip-app-note/.



8

[3] 2011 Common Image File Format Comparisons.
https://socialcompare.com/en/comparison/image-
file-formats. 2011.

[4] L Peter Deutsch. Deflate compressed data format specifica-
tion version 1.3. 1996.

[5] Pillow (PIL fork). Read the docs.
http://pillow.readthedocs.org/en/latest/reference/ImageMath.html/.

[6] Phillip Katz. Computer software pioneer, 37. The New York
Times, 2009.

[7] Claude Elwood Shannon. A mathematical theory of com-
munication. Bell System Technical Journal, 1948.

[8] Michael. Stay. Zip attacks with reduced known plaintext.
http://math.ucr.edu/ mike/zipattacks.pdf.

[9] Wikipedia. High dynamic range imaging.
http://en.wikipedia.org/wiki/High-dynamic-range imaging/.


	Introduction
	Existing Compression Algorithm
	ZIP Archive
	Design
	Structure
	Compression Method
	Encryption


	The New Algorithm
	Design
	Structure
	Encryption

	The conversion to RGB
	Analysis

	Conversion to Float Values
	Analysis

	Results
	RGB Method
	Float Method

	Bitwise Compression Algorithm
	Conclusion
	Appendix A: Pseudocodes
	Reshaping Data
	Converting Data to RGB
	Converting Data to Float

	References

