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Abstract

We demonstrate for the first time differences in functional and effective tactile connectiv-

ity in full-term and preterm infants using complex network analysis. Our baseline network

studied the resting state connections of neural signal amplitude as measured using a high-

density electroencephalography (EEG) array, prior to stimulation of the infant hand with a

tactile stimulus. We compared event-related potential (ERP) data from EEG measurements

between 54 full-term babies (born after a typical 40 weeks pregnancy period) and 32 preterm

infants (born prior to 31 weeks gestation). Measurements were performed both in the resting

state and in the functional state in response to the tactile stimulus (air-puffs delivered by a

custom-made apparatus) using a high-density array of 128 electrodes embedded in a soft

net.

Using network analysis of the ERP data, we were able to identify an organization into

smaller communities, using the louvain method of community detection, based on modularity

maximization. Because of the potential criticisms of modularity maximization being bound

by the problem of resolution limit, we further extracted the connected components from

the derived network and found signatures of both, resting state and the functional state

connectomes in pre-specified windows after a tactile stimulus.

Further we referenced individual infants to the full-term grand averages of the respective

time windows to specifiy common and uncommon nodes . The results of the analysis give

clear markers of changes in functional and resting networks for both term and preterm
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infants. We also showed that infant brain networks are not scale-free and that the degree

distributions instead follow exponentially truncated powerlaw.
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Chapter 1: Introduction

About 15 million babies are born preterm each year and over a million of these babies

do not survive [12] [38]. Neurodevelopmental problems are significantly more common in

children born preterm. Studies show that preterms are at a higher risk of developing autism,

attention deficit / hyperactivity disorders and reduced cognition at school age [11], have

emotional disorders [35], are at a higher risk of manifesting neurological abnormalities [41]

and of educational underachievement [15] . Neurodevelopmental disabilities in infants

have been investigated using different approaches including Graph theoretic perspective,

in particular, connectivity and complex networks using data from non-invasive techniques.

These novel perspectives have given new insights into disorders and how they alter the

neural networks.

Small World networks have been detected in the adult human brain [51] as well as in

children aged from 7 years and older [23] [49]. Previous studies have used fMRI to detect

the presence and alterations of small world networks within the functional brain networks

in patients with schizophrenia [37]. The topological structure of the functional network of

the infant brain may also be a small-world network [26] . An increase in average clustering

and path length and decrease in weight dispersion within the network may indicate brain

maturation characterized by a shift from random to more organized small-world functional

networks [14].
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Resting state functional connectivity derived from fMRI data demonstrates the pre-

dominance of anatomical proximity in infants and functional connectivity in adults, when

examined using graph connectivity, community detection, and clustering coefficients. These

studies also suggest the presence of a sophisticated information processing system estab-

lished in early stages of brain development, though they are limited by the resolution of

the fMRI methodology. Functional MRI has been successfully used in the studies of early

biomarkers of childhood-onset schizophrenia [3]. Brain networks in two-year-olds have

demonstrated higher modularity than in younger babies or adults [25]. The identification

of hubs and the importance of network structure in neural communication and complex

cognitive functions has been well established in the literature [52]. The theory of the shortset

path being most efficient has also been questioned. Higher cognitive scores appear nega-

tively correlated with path length but not with clustering or overall connectivity. Patterns of

injury based on functional connectivity could provide biomarkers for diagnosis, prognosis

and recovery of diseases [29]. Brain networks in adults are not scale free, but instead their

degree distributions follow an exponentially truncated power law [48] [1].

While it has been established that electrophysiological methods measure neuronal

activity more directly and have better temporal resolution, most studies still use fMRI due

to its ubiquity [16]. The small number of subjects and limited data resolution can affect the

size of the neural networks and the applicability of inferences from these studies. Preterm

infants have been a subject of special interest, but effective EEG studies, differentiating

preterm and full-term neuronal networks based on event-related potentials (ERP) data have

been missing.

In this study, we hypothesized the differences in small world and community structures

of preterm and full-term infants measured using EEG data. We used complex network

2



analysis on time-series tactile stimulus data to show differences in preterm and full-term

neuronal networks. We investigated the patterns of connectivity in the community structure

and small world networks of term and preterm neural networks. Lastly, we investigated the

differences in neural networks from a scale free perspective.
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Chapter 2: Background and Related Work

Preterm infants have been at the center of discussions when it comes to neurodevelop-

mental disorders. Studies have tried drawing parallel between infants, adolescents and adult

brains. This section reviews the past studies involving neuronal activity and neurodevel-

opmental disabilities, explored from a network perspective. Most of these studies involve

the use of functional magnetic resonance imaging (fMRI) and utilize various parcellation

techniques. A few of these techniques also involve significant amount of human effort.

Schmidt 2007 [39], conducted studies that have examined the short-term stability of

resting frontal electroencephalography (EEG) asymmetry measures in typically developing

infants. It was found that infants in the Stable Right frontal asymmetry group exhibited a

significantly higher baseline heart rate and were rated higher on maternal perception of fear

at age 9 months compared with infants in the other two groups, replicating earlier work.

Douw et al. 2011 [21], reported the relation between resting-state functional brain

topology with overall and domain-specific cognitive performance in healthy participants

and possible gender differences, using magnetoencephalography (MEG) in 14 male and

14 female participants. Better total cognitive performance was related to increased local

connectivity in the theta band, higher clustering coefficient (in delta and theta bands) and

higher small-worldness (in theta and lower gamma bands). Women showed less clustering

and shorter path length in the delta band compared to men, suggesting that women’s brains
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are more efficiently wired than men’s brains, which may implicate a functional benefit in

females, which is reflected in weaker correlations between network topology and cognitive

performance in women.

Fair et al. 2007 [24] calculated the small-world properties of graphs from 39 task

control regions from resting-state functional connectivity MRI (rs-fcMRI) data from 210

subjects aged 7-35 years and found that, throughout development from childhood to young

adulthood, network clustering coefficient values were near those of lattices, and network

path length values were near those of random graphs, indicating that the graphs were small-

world networks at all ages examined. This suggested that, despite the large differences in

community structure across development, that child, adolescent, and adult networks were

all organized in a manner that facilitated simultaneous efficiency on local and global scales.

Power et al. 2010 [46] found that selected short-distance edges tend to be strong in

children and weaken over development, in contrast to a subset of long- distance edges, which

are typically weak in children and increase in strength over development. Second, these

developmental increases in edge strengths tend to occur between nodes that are functionally

related in young adults, such as edges between nodes within the default mode network, or

edges between nodes of the fronto-parietal task control network. Third, community structure

is present and strong in graphs at all stages of development. Fourth, as a result of local

decreases and long-distance increases in edge strengths over development, communities

in children group nodes largely by anatomical proximity, whereas communities in adults

group nodes by functional roles. Finally, despite the reorganization of communities over

development, graphs are consistently structured in manners that facilitate efficiency at both

local and global network scales.
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Power et al. 2011 [45] studied graphs of functional brain organization in healthy adults

using resting state functional connectivity MRI. They found that graph measures of the areal

network indicate that the default mode subgraphs share network properties with sensory and

motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a

"processing" system.

Batalle et al. 2012 [10] used diffusion MRI based connectomics to obtain structural brain

networks of a prospective cohort of one-year-old infants (32 controls and 24 Intrauterine

Growth Restriction (IUGR)) and analyzed the existence of quantifiable brain reorganization

of white matter circuitry in IUGR group by means of global and regional graph theory

features of brain networks. IUGR infants presented decreased global and local weighted

efficiency, and a pattern of altered regional graph theory features. By means of binomial

logistic regression, they also demonstrated that connectivity measures were associated with

abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale

for Infant and Toddler Development, Third edition (BSID-III) at two years of age. They

showed that the structural brain networks of 1-year old children are small-world network

of neural tracts. Random networks communicate every pair of nodes with relatively few

intermediate steps, but have a lack of organization. On the contrary, lattice networks have a

high level of organization but a poor average capability to efficiently communicate a given

pair of nodes.

Elsabbagh et al. 2010 [22] tried to decipher the answers related to autism (ASD) in

babies from the perspective of genetics. They intended to establish a relationship between

the autistic babies and their siblings and also wish to identify some early stage biomarkers

such as an atypical rapid rate of brain growth. They further related heritability of ASD and

the genetic risk contributing to the emergence of the condition.
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Jones et al. 2001 [33] compared EEG activity of 10-month-old infants of depressed

and non-depressed mothers, during stimuli designed to produce happy and sad responses.

Infants of depressed mothers showed greater relative right frontal EEG asymmetry compared

to infants of non-depressed mothers, both during baseline and during a play interaction

with their mothers. Infants of depressed mothers also showed more negative and less

positive expressions. They further relate the frontal EEG activity to be a biological marker

for symptoms of depression, basing their analysis on Multivariate Analysis of Variance

(MANOVA).

Vanhatalo et al. 2006 [53] proposed a simple, neurophysiologically and neuroanatom-

ically based framework for neonatal EEG interpretation. This is composed of two devel-

opmental trajectories: one related to discrete spontaneous activity transients (SAT) and the

other to the ongoing, apparently oscillatory EEG activity.

Liu et al. 2008 [37] investigated the topological properties of human brain functional net-

works derived from resting-state fMRI. They obtained data from 31 patients with schizophre-

nia and 31 healthy subjects; then functional connectivity between 90 cortical and sub-cortical

regions was estimated by partial correlation analysis and thresholded to construct a set of

undirected graphs. Their findings demonstrated that the brain functional networks had effi-

cient small-world properties in the healthy subjects; whereas these properties were disrupted

in the patients with schizophrenia. Brain functional networks had efficient small-world

properties which support efficient parallel information transfer at a relatively low cost

(from Achard and Bullmore, 2007). More importantly, in patients with schizophrenia the

small-world topological properties were significantly altered in many brain regions in the

prefrontal, parietal and temporal lobes. Patients with schizophrenia showed disturbed topo-

logical properties, such as a lower degree of connectivity, a lower strength of connectivity, a

7



lower absolute clustering coefficient and a longer absolute path length compared with those

of healthy subjects, indicating a decreased synchronization of functionally related brain

regions in schizophrenia.

Chen et al. 2008 [17] investigated the intrinsic modular architecture of the human brain

network derived from cortical thickness measurement. They showed that the human cortical

network is organized into 6 topological modules that closely overlap known functional

domains such as auditory/language, strategic/executive, sensorimotor, visual, and mnemonic

processing, by investigating the modularity of a cortical network consisting of 45 regions

and 102 significant connections that was constructed in their previous study using MRI data

from 124 normal adults. They also evaluated the topological importance of specific cortical

regions and paths, in terms of their contribution to network properties.

Fransson et al. 2011 [26] showed that cortical hubs and their associated cortical networks

are largely confined to primary sensory and motor brain regions in the infant brain. Their

findings in infants stand in stark contrast to the situation found in adults where the majority

of cortical hubs and hub-related networks are located in heteromodal association cortex.

They suggest that the functional network architecture in infants is linked to support tasks

that are of a perception-action nature. Their results were 3-fold: 1. Explored the potential

presence of cortical hubs in the infant brain, 2. Identified the cortical networks associated

with cortical hubs in the infant brain, 3. Investigated the overall topographical structure of

the functional organization of the infant brain. They had fMRI imaging data from 18 infants.

They also concluded that the topological structure of the functional network in the infant

brain lies well within the small-world network regime. One of their key finding was that at

the time of birth, the functional brain connectome largely involved brain regions responsible

8



for sensation and action, whereas only weak involvement was found for heteromodal brain

areas.

Boersma et al. 2011 [14] used graph theoretical concepts to examine changes in func-

tional brain networks during normal development in young children. They used resting-state

eyes-closed, 14 channel EEG data from 227 children, recorded twice (once in 5 years, then

again in 7 years). Mean normalized clustering index, average path length and weight disper-

sion were calculated to characterize network organization. For all frequency bands mean

synchronization likelihood (SL) decreased from 5 to 7 years. Clustering coefficient increased

in the alpha band. Path length increased in all frequency bands. Mean normalized weight

dispersion decreased in beta band. Girls showed higher synchronization for all frequency

bands and a higher mean clustering in alpha and beta bands. They found an increase in aver-

age clustering and path length and decreased weight dispersion indicating that normal brain

maturation is characterized by a shift from random to more organized small-world functional

networks. Gender effects were found to be significant for the normalized clustering index,

showing higher clustering in girls than in boys.

Alexander-Bloch et al. 2010 [4] used graph theory to investigate topology of networks

derived from resting-state fMRI data on 13 childhood-onset schizophrenia (COS) patients

and 19 healthy volunteers. They measured functional connectivity between each pair of

100 regional nodes, focusing on wavelet correlation in the frequency interval 0.05-0.1 Hz,

then applied global and local thresholding rules to construct graphs from each individual

association matrix over the full range of possible connection densities. Their major focus

in this article was on modularity, using two approaches - k-means unsupervised learning

and spin-glass approach - at different resolutions. They found that modularity of brain

functional networks was significantly reduced in COS, due to a relatively reduced density
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of intra-modular connections between neighboring regions, also clustering was decreased,

while complementary measures of global efficiency and robustness were increased, in the

COS group.

Geary et al. 2002 [27] described the existing studies on brain and cognitive plasticity.

They argued that 4 forms of modularity and 3 forms of neural and cognitive plasticity define

the relation between genetic constraint and the influence of developmental experience.

Johnson 2001 [31] presented research on the postnatal neuroanatomical development

of the human brain, and findings on perceptual and cognitive development during infancy.

He described various experiments that have been performed on infants involving tasks like

object finding, face recognition and other studies related to perceptual abilities. The three

theories of brain development he describes are: 1. The maturational perspective, 2. The

interactive specialization approach, 3. The skill-learning hypothesis. He highlighted the

need for better non-invasive imaging techniques.

Fair et al. 2009 [23] combined resting state functional connectivity MRI (rs-fcMRI),

graph analysis, community detection, and spring-embedding visualization techniques to

analyze four separate networks (the cingulo-opercular, fronto-parietal, cerebellar, and de-

fault mode networks). They found a trend toward ’segregation’ (a general decrease in

correlation strength) between regions close in anatomical space and ’integration’ (an in-

creased correlation strength) between selected regions distant in space. They stated that

this is a general developmental principle for changes in functional connectivity that would

extend to large-scale graph theoretic analyses of large-scale brain networks. Communities

in children are predominantly arranged by anatomical proximity, while communities in

adults predominantly reflect functional relationships. They claimed that the organization of

multiple functional networks shifts from a local anatomical emphasis in children to a more
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"distributed" architecture in young adults. They argued that this local to distributed devel-

opmental characterization has important implications for understanding the development

of neural systems underlying cognition. They found similar graph theoretical properties,

showing a small-world like network in both children and adults, while the community detec-

tion (using modularity optimisation) gives stable communities that are different between

young children and young adults. They stated that early school age children and adults both

have relatively efficient systems that may solve similar information processing problems

in divergent ways (implying that communication efficiency in both children and adults is

similar). They stated that the regions in close proximity of each other were highly correlated

over the development periods. They had a resting-state fcMRI data from 210 subjects, aged

7-31 (66 aged 7-9; 53 aged 10-15; 91 aged 19-31). They also stated that by 8 years old,

the networks already display ’small world’ properties similar to those of adult networks,

indicating that efficient graph structures are already in place for both local and distant

processing, though they are organized differently than in later development (which we have

found for infants). The size of their graph was limited to only 34 nodes and therefore it is

possible that with an increase in number of nodes the specific results identified by them

might change. Also, their regions of focus were derived from adult imaging studies.

Fan et al. 2011 [25] analyzed development patterns of brain anatomical networks

derived from morphological correlations of brain regional volumes, using longitudinal MRI

data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2

years. Their results show that the brain network of 1-month-olds has the characteristically

economic small-world topology and nonrandom modular organization. The network’s

cost efficiency increases with the brain development to 1 year and 2 years, so does the

modularity, supporting their hypothesis that the small-world topology and the modular
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organization of brain networks are established during early brain development to support

rapid synchronization and information transfer with minimal rewiring cost, as well as

to balance between local processing and global integration of information. They had

3 questions: 1. Do the brain networks have economic small-world topology in early

development? 2. Do the brain networks have modular organization in early development?

3. How does the efficiency and modularity of the brain networks change in the course of

early development? To draw a parallel between children and adults, they considered MRI

images of 27 healthy adult subjects (13 males/ 14 females, 24±3 years). Modularity has

been calculated using a method described in (Clauset et al. 2004 [19]). For the statistical

significance of graph metrics, they used permutation test. They claimed that the cost

efficiency increases with the brain development, similar to the global efficiency. They stated

that modularity of the brain networks of two-year-olds is higher than the modularity of the

brain networks in younger and adult brains, a similar trend to the local efficiency. They

also claimed that this is the first longitudinal study of brain networks with respect to their

efficiency and modular organization in early brain development. They admited the limitation

of the study being the relatively small sample size. They concluded with the claim that the

efficiency and modularity increases with brain development.

Paterson et al. 2006 [44] provided an overview of four domains that have been studied

using techniques amenable to elucidating the brain/behaviour interface: language, face

processing, object permanence, and joint attention, with particular emphasis on studies

focusing on early development. With this review they aimed to stimulate thinking about

gaps in our understanding of relationship between brain and behaviour across development.

They aimed to provide ideas about candidate brain areas that are likely to be implicated in

particular behaviours or cognitive domains.
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Alexander-Bloch et al. 2012 [3] presented a work based on their previous paper (2010,

given above), where they showed that modularity decreased in functional brain networks

in schizophrenia. They introduced a method based on the normalized mutual information

between pairs of modular networks to show that the community structure of the brain network

is significantly altered in schizophrenia (concomitant with a decrease in modularity), using

resting-state fMRI in 19 participants with childhood-onset schizophrenia and 20 healthy

participants. They found that modularity is decreased in the functional networks of patients

with childhood-onset schizophrenia, implying that there are relatively more connections

between modules, and fewer connections within modules, in the patient population, which in-

turn implies that the anatomical identity of the brain regions comprising specific functional

modules is altered in schizophrenia. They found among the most consistent modules are the

occipital module, the subcortical module, and at least in the healthy participants the primary

motor/somatosensory module. They also showed that within-group similarity in the brain

functional community organization is significantly higher than the between-group similarity.

van den Heuvel et al. 2013 [52] discussed network based approaches, the brain hubs and

their roles in information integration underpinning numerous aspects of complex cognitive

function. Their goal is was to examine the concept of network hubs in the context of

brain data, with respect to their central placement in the overall network structure and

their putative role in neural communication and integrative brain function. They discussed

recent findings of network studies that highlight the central role of candidate hubs in both

the healthy and diseased brain, offering a conceptual framework that examines potential

functional roles of neural hubs from the perspective of network science, especially in the

context of network models of communication, integration, and information flow. Their

major focus has been on fMRI data and how Pearson cross-correlation helps to define brain
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networks. They had an anatomical perspective, describing the ‘important’ brain regions and

drawing a parallel between the functional and structural similarities of human brain with

that of cat and macaque and argue that the structural hubs remain the same despite different

data collection methodologies. They also attributed fictional connectivity of child brain to

heredity. They raised an important question demeaning the assumption that shortest paths in

the brain network are most efficient and stated that we do not have enough data on these

special subjects that traces network paths for the flow of information. Maybe answering

this question requires a lot more data and detailed scrutiny. They say that the imbalance

between incoming and outgoing projections suggests a potential role for cortical hub regions

as neural communication ‘sources’ and ‘sinks’ and also that we cannot fully predict the

dynamic patterns of communication. They stated that hub models of brain connectivity

suggest that the short paths contributing to small-world are not randomly placed within the

network architecture, but these shortcuts rather aggregate at the hub nodes. They concluded

with the following questions: 1. What is the most sensitive and reliable way to detect

network hubs? 2. To what extent can structural network models of the brain predict the

location of functional hubs? 3. Do hub nodes differ from non-hubs in their gene-expression

and metabolic profiles? 4. What are the developmental mechanisms through which hub

regions emerge? 5. To what extent do hubs form global sources and sinks of neural activity?

6. Which brain and mental disorders can be understood as ‘disorders of brain network

communication’? 7. Are brain hubs potential ‘hot spots’ for developing new diagnostic

biomarkers or attractive targets for therapeutic intervention?

Hagmann et al. 2010 [28] explored the contribution of white matter maturation to the

development of connectivity for 30 subjects between ages 2 and 18 years using high b-value

diffusion MRI tractography and connectivity analysis. They measured changes in connection
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efficacy as the inverse of the average diffusivity along a fiber tract and observed significant

refinement in specific metrics of network topology, including a significant increase in node

strength and efficiency along with a decrease in clustering. Major structural modules and

hubs were in place by 2 years of age, and they continued to strengthen their profile during

subsequent development. They also recorded resting state fMRI from a subset of subjects

confirming a positive correlation between structural and functional connectivity, and in

addition observed that this relationship strengthened with age. They found that network

refinement mediated by white matter maturation promotes increased global efficiency.

They hypothesized that the functional phenomena are driven through structural network

refinement, such as regionally specific increases in myelination, axonal diameter, remodeling

of dendritic arborization, and neurochemical changes. They used cortical parcellation in

addition to using apparent diffusion coefficient (ADC) as a marker of white matter maturation.

They found that brain structural networks exhibit robust small-world properties across the

entire range of development examined. The small-world index generally decreases with age,

with significant negative correlations found for individual cortical hemispheres and whole-

brain networks, at both low and high resolutions. Modularity did not exhibit consistent

significant trends with age, while centrality remained largely unchanged and structural

clustering coefficient exhibited a marked decrease with age. Overall, they wanted to test

how the underlying structural substrate is reshaped by white matter maturation during

this important developmental period and how these structural modifications parallel these

established functional trends. They suggested that maturation of interregional pathways

results in topological changes in structural brain networks.

Micheloyannis et al. 2006 [40] characterized the spatial pattern of functional connectivity

by computing the synchronization likelihood (SL) of EEG (from a 28 cap electrode) at rest
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and during performance of a working memory task using letters of the alphabet presented

on a PC screen in subjects with schizophrenia (20 subjects, 15 male, 5 female, mean age

32.4 years, mean duration of illness 10 years) and 20 healthy controls. They tested if

a disruption of an optimal spatial pattern ("small-world") of the functional connectivity

network underlies schizophrenia. During the working memory (WM) task healthy subjects

exhibited small-world properties, in alpha, beta and gamma bands, which were not exhibited

by the schizophrenic group. They claimed their findings to be in accordance with a partially

inadequate organization of neuronal networks in subjects with schizophrenia. Coherence is

not sensitive to nonlinear dynamical interdependences (Break- spear et al., 2003), which

is why they came up with SL method. The schizophrenia group showed a significantly

lower Clustering Coefficient at rest and during WM, while the path length was significantly

higher at rest, but not during WM. The findings of small-world network disturbances in

schizophrenia are indicative of a partial disorganization of neural networks in this illness.

They claimed that their work is the first such study in schizophrenia research.

Bullmore et al. 2009 [16] presented a very broad overview of the field and studies,

reviewed different methods and role of networks with bits and pieces of anatomical review.

They reviewed studies investigating complex brain networks in diverse experimental modali-

ties (including structural and functional MRI, diffusion tensor imaging, MEG and EEG in

humans) and provided an elementary introduction to the basic principles of graph theory.

They discussed clustering of functionally related areas with short average path lengths, which

are indicative of the small-world architecture. They also provided an anatomical perspective

where they stated that the precuneus, the insula, the superior parietal cortex and the superior

frontal cortex show high ‘betweenness centrality’ and thus constitute putative hubs. Using

parcellation, they found highly clustered networks, with majority of paths existing in close
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anatomical proximity. The precuneus is involved in self-referential processing, imagery and

memory, and its deactivation is associated with anaesthetic-induced loss of consciousness.

Mapping functional networks using fMRI, they found that high-degree nodes or hubs of this

network were mostly regions of multimodal association cortex, and the degree distribution

was described by an exponentially truncated power law. The older age group also showed

evidence of small-world properties, but had significantly reduced cost efficiency as they had

to be relatively over-connected in order to provide efficiency for parallel information transfer

as seen in younger subjects. They stated that the electrophysiological methods measure

neuronal activity more directly and have better temporal resolution. Many large networks

exhibit scale free power law degree distributions, indicative of existence of highly connected

nodes. It is notable that pure power law scaling of the degree distributions of human brain

functional networks has only been reported by voxel-level analysis, whereas exponentially

truncated power laws have been reported by region-level analysis. Their findings indicate

that brain’s structural and functional networks are intimately related and share common topo-

logical features, such as modules and hubs. They stated that the brain networks derived from

fMRI, EEG or structural MRI data are altered in patients with schizophrenia or alzheimer’s

disease (as seen from papers cited above) and loss of small-world network properties might

provide a clinically useful diagnostic marker. They quoted 3 case studies, showing how

networks confirmed a degradation of small-world attributes in patients with Alzheimer’s

disease and suggested that this effect is due to disease-related changes at highly connected

network hubs. They also discussed high heritability in case of small world networks from

EEG and indicated the importance of short path length in the archetypal brain.

Sporns 2010 [48] provided an overall idea of the field, discussed the relevance of theo-

retical and methodological foundations of network theory and linked them with possible
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applications in the field. High clustering and a short path length are the defining charac-

teristics of a universal class of network architectures found in social, technological, and

biological systems, including the brain (Sporns and Zwi, 2004). The modular small-world

networks encountered in the brain not only allow for efficient information processing but are

economical with respect to their wiring and metabolic cost (Bassett and Bullmore, 2006).

He discussed the criticalness of the centrality and its influence for predicting functional

disturbances that occur upon node or edge deletion, highlighting the importance of scale-free

architecture of networks (if you attack the hubs, the system can break down with a high

probability).

Hart et al. 2016 [29] described the ideas and concepts behind the connectome and its

analysis with graph theory and how to form a connectome using resting state functional

MRI data as an example. They also highlight selected insights into healthy brain function

that have been derived from connectome analysis and illustrate how studies into normal

development, cognitive function, and the effects of synthetic lesioning can be relevant to

neurosurgery. They conclude by providing a pr é cis of early applications of the connectome

and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

Experiments on intelligence and network found that a higher IQ was negatively correlated

with path length but not with clustering or overall connectivity. They stated that the patterns

of injury based on functional connectivity could provide biomarkers for diagnosis, prognosis

and recovery. In mild Traumatic Brain Injury (TBI) patients, networks had a longer average

path length, reduced overall cost, and reduced network efficiency compared with controls.

Achard et al. 2007 [2] investigated the efficiency and cost of human brain functional

networks measured using fMRI in a factorial design: two groups of healthy old (N = 11;

mean age = 66.5 years) and healthy young (N = 15; mean age = 24.7 years) volunteers
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were each scanned twice in a no-task or “resting” state following placebo or a single dose

of a dopamine receptor antagonist (sulphide 400 mg). Functional connectivity between

90 cortical and subcortical regions was estimated by wavelet correlation analysis and

thresholded to construct undirected graphs. These brain functional networks were small-

world and economical in the sense of providing high global and local efficiency of parallel

information processing for low connection cost. Efficiency was reduced disproportionately to

cost in older people, and the detrimental effects of age on efficiency were localized to frontal

and temporal cortical and subcortical regions. Dopamine impaired local and global efficiency

but it did not interact with the effect of age. They claim that brain functional networks have

economical small-world properties — supporting efficient parallel information transfer at

relatively low cost — which are differently impaired by normal aging and pharmacological

blockade of dopamine transmission. The paper revolves around the main hypothesis that

small-world brain functional networks have economical properties of high global and local

efficiency for low cost. They found that efficiency monotonically increased as a function

of cost in all networks; the random graph had higher global efficiency than the lattice;

and the lattice had higher local efficiency than the random graph. Also, older people had

reduced global and local efficiency of brain functional networks compared with younger

people. Complete sample: 30 healthy human volunteers were recruited in two age groups:

17 younger participants aged 18-33 years, mean age = 24.3 years, nine male; and 13 older

participants aged 62-76 years, mean age = 67.3 years, six male.

Given the large corpus of literature and increased effectiveness of EEG data for recording

brain activity, studies involving term and preterm infants, investigating the differences in

neural networks of the two was still missing from the field. Also, most of these studies

involve the use of fMRI data instead of more effective EEG.
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Chapter 3: Methodology

The data used in this study were a subset from a prospective observational cohort

of infants cared for in the newborn and intensive care nurseries at Vanderbilt University

Medical Center between May 2013 and May 2014. We included full-term infants (38-42

weeks estimated gestational age (EGA)) and preterm infants (24-30 weeks EGA) cared

for in the Neonatal Intensive Care Unit (NICU) for a minimum of 48 hours. We excluded

any full-term infants with documented maternal opiate use within 48 hours of testing time

or concerns for intrauterine drug exposures from the medical team, any preterm infants

receiving opiates or sedatives within 48 hours of testing time or those with any antiepileptic

drug use since birth. We also excluded infants with lethal congenital abnormalities or severe

abnormalities on any cranial imaging (cerebellar hemorrhage, intraventricular hemorrhage

grade III or IV, periventricular leukomacia, ischemia or stroke) or infants who had culture-

proven sepsis, meningitis or necrotizing enterocolitis Stage IIA or greater, or severe BPD.

Parents consented prior to testing using Vanderbilt IRB-approved protocols.

3.1 Somatosensory Testing

Continuous EEG data were acquired using published protocols as near to discharge as

possible in preterm infants (35-38 weeks Postmenstrual age (PMA)) and between 1 and

3 days after birth for full-term infants. Briefly, a high-density array net of 128 electrodes
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embedded in soft sponges (Geodesic Sensor Net, EGI, Inc., Eugene, OR [32]) recorded

the EEG using NetStation software (v. 4.3; EGI, Inc., Eugene, OR). Data were sampled at

1000Hz. All infants were tested in his/her patient room while lying on their backs in the

bassinet/crib or being held in the supine position by a caregiver. No restraint was used, and

infants were tested in a quiet alert or drowsy state. Tactile stimulation approximating light

touch was delivered by means of air puffs emanating from a nozzle positioned 5 mm above

the skin of the palmar surface of the right hand using a mold holder. The puff delivers a

calibrated pressure of 5psi over a 3mm2 area. Over a 5-minute experimental session, 60

puff stimuli were delivered at random inter-trial intervals, with a minimum of 2500 ms

between puffs and no greater than 2 consecutive puffs to prevent habitation. ERP data were

pre-processed according to published protocols and using NetStation algorithms.

3.2 Generation of mean amplitude components

Based on our prior studies [38], we identified a time window in term and preterm infants

during which the global field power (a reference-independent measure of the electric field

of the brain across the entire scalp) [36] [42] was most significantly different from a sham

control stimulus (171-240 ms post-stimulus). This served as a time window in which to

explore functional connectivity in processing of light touch. Baseline EEG during the 200ms

prior to the stimulus served as a time window to study resting state connectivity. For each

electrode, the mean amplitude was calculated across the time interval.
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3.3 Network Analysis

3.3.1 Community Detection using modularity maximization

Modularity is a scale value (ranging between -1 and 1) that relates the structure of

the community with the network outside the community by comparing the density of the

edges within to those present outside the community. The Louvain Method is a greedy

optimization method (complexity O(nlogn)), iteratively optimizing local communities until

global modularity can no longer be improved, given small perturbations in community

state [13].This method is an unsupervised, two-phase iterative method.

In phase 1 of the algorithm, we started with a network of N nodes, assigning a separate

community to each node, so that the total communities, at this step, are equal to the number

of nodes in the network at the given resolution. For each node i, we considered its neighbor

j. Node i, was then removed from its own community and placed into the community of j.

We then calculated the gain in modularity (equation given) for the community from which i

was removed and for the neighbor j’s community, to which i was added. We then placed

i in j’s community, the j for which the gain (positive) is maximum. For a tie in any two

communities, we used a random tie-breaking rule. In case if there was no positive gain

possible, we left i in its original community.

∆Q =

[
Σin +2ki,in

2m
−
(

Σtot + ki

2m

)2]
−
[

Σin

2m
−
(

Σtot

2m

)2

−
(

ki

2m

)2]
where, Σin: Sum of weights of edges inside the community

Σtot : sum of all the weights of links to nodes in the community

ki: Sum of weights of edges connected to i (can be thought of as weighted degree of i)

ki,in: Sum of weights of all the edges from i to nodes inside the community
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m: Sum of all edge weights in graph G (since we have an unweighted graph, consider weight

to be 1, so m here is the number of edges in the graph)

In phase 2 of the algorithm, the communities found in the first phase were then considered

as individual nodes. Weights of links between the new nodes were given by sum of weights

of links between nodes in the two communities in consideration. (Weight between the two

nodes (two communities actually) was given by the sum of weights between all the nodes

in the two communities (which is referred as the new node)). Links between the nodes

of the same community (referred as the new node in this phase) lead to self-loops for this

community in the new network.

Q =
1

2m
Σi j

[
Ai j−

kik j

2m

]
δ (ci,c j),

where, Ai, j: Edge weight between nodes i and j

ki: Sum of weights of edges connected to i (can be thought of as weighted degree of i)

m: Sum of all edge weights in graph G (since we have an unweighted graph, consider weight

to be 1, so m here is the number of edges in the graph)

ci: community to which node i is assigned

δ : Simple δ − f unction (delta function), equals 1 if all the parameters are equal, else equals

0

Both phases were iterated until modularity (equation given) was maximized. The

order in which the nodes were considered may have affected computation time but not

modularity. The output of this analysis generates community graphs identifying nodes in

each community, a modularity coefficient for the entire network and absolute degree/degree

distribution for all nodes within communities.

23



3.3.2 Small World Detection

We started with a graph G of N nodes and checked if the graph is connected or if it

is disjointed, i.e. two or more separate subgraphs existing in the same network without a

common edge or if there were any free nodes in the network, which were neither connected

together nor part of any subgraph. All the free nodes were removed from the network. The

disjointed subgraphs of a particular network were filtered and treated as separate networks.

If the graph was connected, with no disjointed components, we left it as it is. We then

proceeded with the following algorithm for a test of small world [30].

We defined, Lg: mean shortest path length of graph G

C∆
g : Clustering coefficient of G

Lrand: mean shortest path of random E−R graph

C∆
rand: Clustering coefficient of random E−R graph

where the definition of clustering coefficient, based on transitivity, was given by:

C∆ =
3×number of triangles

number of paths of length 2

with triangle being the set of three nodes, with each node connected to the other two.

A network in the analysis was considered small world if Lg > Lrand and C∆
g �C∆

rand .

For a given graph G, 3 corresponding E−R random graphs were generated, with the

same number of nodes as that of G, but with three different edge probabilities, namely 0.3,

0.5 and 0.7.We then calculated the clustering coefficients and shortest path lengths for both

G as well as the three randomly generated E−R graphs and calculated the small world

score, as a testing measure for small world, and the ratio of clustering coefficient of G to

that of the random E−R graph,

γ
∆
g =

C∆
g

C∆
rand
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We then calculated the ratio of shortest path length of graph G to that of random E-R graph,

λg =
Lg

Lrand

Small-world-ness, S∆ (Small-World score) was then calculated as

S∆ =
γ∆

g

λg

A network was a small world, if S∆ > 1. The test was then repeated with the random E-R

graphs with different edge probabilities, keeping the original graph, the one being tested for

small-world-ness, intact.

In case of joint graphs or for separated subgraphs of considerably large size, where the

Small-World score was not greater than 1 (S∆ ≯ 1), we fragmented the network into various

smaller connected components which could be small worlds. Breaking the network into

smaller connected component subgraphs was accomplished using NetworkX’s subroutine

called connected_ component_ subgraphs. First, we iterated over all the vertices v in the

given Graph G, checking for the vertices which had not been visited. If the vertex v had not

been visited, we computed the single source shortest path length of v in G. All vertices were

visited, returning the list of single source shortest path length for v and parsing it to so that

for each connected component c, we created a subgraph, given the list returned from part 1

for c.

Single source shortest path length was defined as the shortest path length from source (here,

vertex v) to all other reachable nodes in the Graph G. If the node was not reachable from the

source node, it was automatically treated as a separate component).

3.3.3 Scale-Free Testing

Any network in general is considered to be a scale-free network if its degree distribution

follows power law, at least asymptotically. If the clustering coefficients follow power law as
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well, the network is scale free. A non scale-free small world has a lower degree distribution

and high clustering coefficient compared to a scale free small world. For our given data,

we performed hypothesis testing, with the null-hypothesis being that the given data follows

power law, based on the methods described by Clauset et al., 2009 [20] and using python’s

package power law [5] . In addition to hypothesis testing based on p-value, the data were

also subjected to testing based on the Loglikelihood ratio, where the other distribution in

consideration was exponential.

3.3.4 Comparison of Common v/s Uncommon Nodes

We considered the list of the node set for the smaller connected component networks

used in the small world analysis. The various smaller connected component networks

were identified manually from the average of all the trials for a particular infant and stored

separately. For each infant, the node set of the connected components was considered, in the

given range and referenced against the grand average network of all full-term infants in the

predefined time ranges. The nodes for the manually identified networks for a particular range

were considered to be one set while the nodes for the grand average of the corresponding

range and type were considered to be the other. We determined the nodes common to both

the sets using set intersection. Similarly, uncommon nodes were determined by the operation

of set difference over the two sets in consideration. Iteratively repeating the process for the

average of trials for every infant and storing the number of nodes occurring in the common

and uncommon sets, we plotted the number of common nodes on the abscissa (x− axis)

against the number of uncommon nodes on the ordinate (y−axis).
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Chapter 4: Results

Eighty-six infants, 54 full-term and 32 preterm, with estimated gestational age (EGA)

38-42 and 24-30 weeks, respectively, underwent EEG recordings at the Vanderbilt University

Medical Center. Post removal of channels not associated with neural vectors (ear/eyebrow),

the following results were obtained using our methodology.

4.1 Community Analysis

For the time windows in consideration, namely -200 to 0 (baseline), 171 to 240 (response

to stimulus) we observed similar network graphic representations, across full-term and

preterm groups at baseline. For response networks, graph patterns appeared different from

baseline, but displayed similar patterns between full-term and preterm groups. Community

networks graphs and their corresponding trace matrices were similar between full-term and

preterm groups. The size of communities at baseline was similar, with the three largest

communities in the full term group consisting of 19, 14 and 13 nodes, and in the preterm

group consisting of 17, 15 and 11 nodes. During the tactile response, networks appeared

denser, with an increased number of edges but a constant number of vertices across the

entire network. To illustrate this, the number of vertices in the largest community in the

full-term group’s response network consisted of 74 nodes, but only 45 nodes in the preterm
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Figure 4.1: Grand Average Network for Preterm in Tactile (Time Window of 171-240 ms
after the stimulus)

group, with less densely connected network. The largest three communities, along with their

nodes and degreesfor baseline and response networks are shown in Table 4.2.

Across all infants, modularity scores are higher at baseline than during the tactile re-

sponse (0.551 StdDev. 0.17 vs 0.434 StdDev. 0.20, p <0.001) indicating that this community

network organization is less robust during tactile signal processing. For baseline networks,
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increasing modularity was associated with increasing gestational age at birth (R(85) =0.254,

p =0.03). This was not the case for tactile networks. (Table 4.1)

In Figure 4.2, Graphs represent community partitions, color coded into different commu-

nities, using the Louvain method. Vertices of the same color belong to the same community.

The adjacency matrix of the corresponding graphs is pictured on the right, with colored

pixels indicating an edge between the vertices at corresponding row and column. The

vertices enclosed in blue squares, running along the primary diagonal of the matrix, are

members of individual communities represented in the graph to the left.

Time Window full-term Preterm
-200 to 0 (baseline) 0.619 0.689
171 to 240 (tactile) 0.020 0.093
341 to 499 (late response) 0.440 0.340

Table 4.1: Modularity table for Grand Average Networks

Time Window Full Term Preterm
Community
Number

Number
of Nodes

Node:Degree Community
Number

Number
of Nodes

Node:Degree

-200 to 0 (baseline)
35 19 {96: 13, 97: 6, 98:

12, 101: 9, 102:
6, 103: 2, 104: 5,
109: 3, 79: 6, 116:
4, 85: 10, 86: 12,
87: 5, 88: 1, 90:
11, 91: 14, 92: 14,
93: 7, 94: 3}

15 17 {96: 5, 66: 7, 67:
3, 71: 6, 72: 6, 76:
9, 77: 9, 78: 2, 81:
4, 83: 8, 84: 10,
85: 10, 54: 1, 90:
2, 91:,7, 61: 7, 30:
2}

10 14 {34: 11, 35: 14,
36: 9, 38: 10, 40:
11, 42: 8, 12: 11,
45: 8, 46: 12, 50:
1, 67: 4, 59: 1, 29:
12, 30: 4}

3 15 {97: 13, 98: 7, 4:
5, 5: 6, 103: 11,
124: 1, 10: 1, 107:
5, 15: 3, 86: 11,
87: 5, 111: 2, 27:
8, 92: 12, 93: 11}
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32 13 {64: 3, 65: 5, 66:
2, 115: 3, 70: 5,
71: 6, 72: 5, 75: 7,
76: 8, 77: 13, 78:
13, 83: 9, 84: 8}

13 11 {33: 5, 18: 6, 19:
5, 20: 5, 21: 2, 22:
6, 23: 6, 24: 8, 26:
9, 28: 3, 29: 3}

171 to 240 (tactile)
3 74 {4: 82, 5: 81, 6:

81, 7: 79, 11: 79,
12: 81, 30: 82, 35:
82, 36: 82, 37: 82,
38: 82, 39: 82,
40: 82, 41:,82, 42:
82, 45: 82, 46: 82,
50: 82, 51: 82, 52:
81, 53: 82, 54: 82,
57: 82, 58: 82, 59:
82, 60: 82, 61: 82,
62: 82, 64: 82, 65:
82, 66: 82, 67: 82,
70:,82, 71: 82, 72:
82, 73: 82, 75: 82,
76: 82, 77: 82, 78:
82, 79: 82, 80: 70,
81: 82, 83: 82, 84:
82, 85: 82, 86: 82,
87: 82, 88: 82, 90:
82, 91: 82, 92:,82,
93: 82, 94: 82, 96:
82, 97: 82, 98: 82,
99: 82, 101: 82,
102: 82, 103:,82,
104: 82, 107: 82,
109: 82, 110: 82,
111: 82, 112: 82,
113: 82, 115: 82,
116: 82, 117: 82,
119: 82, 121: 82,
122: 82}

3 45 {6: 46, 27: 52, 28:
52, 29: 52, 30: 36,
31: 1, 33: 52, 34:
52, 35: 52, 36: 52,
37: 49, 38: 52, 39:
52, 40:,52, 41: 52,
42: 52, 43: 52, 45:
52, 46: 52, 47: 52,
50: 52, 51: 52, 52:
52, 54: 4, 57: 52,
58: 54, 59: 52, 88:
43, 94: 50, 96: 52,
97: 52, 98: 52,
99:,50, 101: 52,
102: 53, 103: 49,
107: 44, 109: 52,
110: 52, 111: 52,
113: 49, 115: 53,
117: 52, 119: 48,
121: 52}
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7 14 {32: 10, 33: 82,
34: 83, 68:,82, 43:
12, 47: 81, 48: 83,
55: 79, 25: 3, 26:
6, 27: 4, 28: 83,
29: 82, 31:,82}

0 20 {1: 7, 2: 2, 123:
16, 7: 2, 104: 10,
105: 14, 83: 54,
12: 51, 77: 2, 93:
3, 19: 44, 20: 52,
122: 53, 23:,46,
24: 52, 84: 19, 26:
52, 91: 54, 60: 4,
90: 54}

2 7 {3: 2, 9: 4, 10: 1,
15: 3, 18:,3, 19: 5,
105: 2}

2 15 {112: 1, 4: 3, 5: 2,
8: 3, 9:,5, 10: 3,
11: 2, 13: 1, 15: 6,
16: 6, 18: 6, 21: 8,
22: 5, 92: 2, 106:
3}

341 to 499 (late response)
0 31 {1: 26, 2: 26, 3:

12, 4: 24, 5:,28, 6:
27, 7: 2, 11: 11,
12: 23, 20: 24, 27:
25, 31: 16, 54: 27,
61: 31, 67:,32, 72:
32, 104: 25, 105:
24, 106: 5, 109:
23, 110: 25, 111:
26, 112: 28, 113:
15, 116: 26, 117:
26, 118: 27, 119:
3, 121: 24, 122:
27, 123: 28}

4 22 {5: 2, 7: 12, 51: 3,
52: 4, 57:,6, 58: 9,
59: 27, 60: 1, 64:
25, 66: 20, 67: 11,
68: 15, 70: 24, 71:
24, 72:,14, 73: 12,
75: 21, 76: 15, 78:
2, 81: 11, 83: 15,
92: 11}

17 22 {53: 23, 58: 14,
60: 14, 64:,14, 65:
17, 66: 17, 68: 1,
70: 17, 71: 18, 73:
3, 75: 17, 76: 17,
77: 15, 78:,13, 79:
1, 81: 2, 83: 17,
84: 15, 85: 1, 88:
6, 90: 15, 94: 1}

1 15 {65: 20, 2: 4, 6:
18, 109: 6, 110:
8, 111: 11, 115:
11, 53: 9, 118: 15,
121: 18, 122: 16,
123: 17, 61: 8, 62:
1, 117: 11}
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1 17 {33: 1, 34: 7, 35:
6, 36: 3, 8:,6, 9: 5,
10: 4, 80: 6, 40: 4,
18: 6, 19: 7, 22: 6,
23: 5, 24: 5, 26: 3,
28:,8, 29: 6}

7 6 {10: 1, 18: 4, 19:
4, 22: 5, 23: 10,
24: 14}

Table 4.2: Nodes in the three major communities found in Grand Average community
detection for Full Term and Preterm in given time windows
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(a) Preterm Baseline (-200 to 0)
Community Structure

(b) Preterm Baseline (-200 to 0) Ad-
jacency Matrix

(c) Preterm Tactile (171 to 240)
Community Structure

(d) Preterm Tactile (171 to 240) Ad-
jacency Matrix

(e) Preterm Late Response (341 to
499) Community Structure

(f) Preterm Late Response (341 to
499) Adjacency Matrix
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(g) Full Term Baseline (-200 to 0)
Community Structure

(h) Full Term Baseline (-200 to 0)
Adjacency Matrix

(i) Full Term Tactile (171 to 240)
Community Structure

(j) Full Term Tactile (171 to 240)
Adjacency Matrix

(k) Full Term Late Response (341
to 499) Community Structure

(l) Full Term Late Response (341
to 499) Adjacency Matrix

Figure 4.2: Grand Average Communities and corresponding Trace Matrices with communi-
ties for Full Term and Preterm in given time windows
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4.2 Small World Analysis

Small world connected components at baseline appear less densely connected than

during the late response. In the tactile response network, the single small world at baseline

appeared to separate into two small worlds, one of very dense and the other sparse (shown

in Table 4.3 & 4.4). To compare the component nodes of small worlds, we calculated the

percentage of common and uncommon nodes, for each subject and compared to the nodes of

the normative grand average small worlds for full term infants in condition. The percentage

of common nodes in the smaller of the tactile response small world network was less than

in all other conditions. During tactile response, preterm and full-term networks had more

similar nodesets than at baseline by Table 4.4.

Small World connected components in full-term infants

Small World connected components in preterm infants

Figure 4.3: Grand average small world representations in full-term and preterm infants for
ranges: -200 to 0 prior to stimulus onset (baseline), 171 to 240 (tactile resting state), 171 to
240 (tactile functional), 341 to 499 (late response) respectively
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Time Window Small World
Score (at p=0.3)

Average Shortest
Path Length

Global Cluster-
ing Coefficient

Number of Com-
mon Nodes

-200 to 0 (base-
line)

1.172 2.548 0.585 32

171 to 240 (small) 4.867 1.150 0.977 88
171 to 240 (large) 2.643 1.714 0.580 0

Table 4.3: Table summarising Grand Average Full Term Small World metrics

Time
Window

Small
World
Score
(at
p=0.3)

Average
Shortest
Path
Length

Global
Clus-
tering
Coeffi-
cient

Number
of Com-
mon
Nodes

Number
of
Uncom-
mon
Nodes

% of
com-
mon
nodes

% of
uncom-
mon
nodes

-200 to
0 (base-
line)

0.840 4.145 0.640 26 33 44.1 55.9

171 to
240
(tactile)

2.726 1.789 0.864 62 9 87.3 12.7

171 to
240
(func-
tional)

0.622 2.438 0.424 5 10 33.3 66.7

Table 4.4: Table summarising Grand Average Preterm Small World metrics referenced to
full term grand average Small world in corresponding window
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4.3 Degree Distributions

The degree distributions for both full term and preterm, across the 2 time windows are

shown in Figure 4.4. The full term baseline plot displays a heavy tailed distribution, while

the preterm baseline plot does not. The results of tests of power law on degree distribution

are documented in Table 4.5 & 4.6 and support that baseline full-term networks do not

follow powerlaw (are not scale free) while preterm baseline networks do. During tactile

stimulation both full term and preterm small worlds display similar patterns and neither

follow power law (small network) nor conform to exponential distributions (large network).

Time
Window

Alpha xmin Loglikelihood
Ratio (R)

p-value Distribution on
the basis of R

Distribution
on the basis of
p-value

-200 to
0 (base-
line)

3.85 7 -2.75 0.008 Exponential Hypothesis
Rejected

171 to
240
(tactile)

2035.97 82 nan nan NA NA

341 to
499
(com-
plex
late re-
sponse)

16.55 26 0.14 0.45 Power Power

Table 4.5: Comparison/Summary table for Power Law testing of Degree Distribution of
full-term Grand Average Networks
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Time
Window

Alpha xmin Loglikelihood
Ratio (R)

p-value Distribution on
the basis of R

Distribution
on the basis of
p-value

-200 to
0 (base-
line)

24.61 11 0.17 0.25 Power Power

171 to
240
(tactile)

193.21 52 nan nan NA NA

341 to
499
(com-
plex
late re-
sponse)

4.74 14 -0.63 0.32 Exponential Power

Table 4.6: Comparison/Summary table for Power Law testing of Degree Distribution of
Preterm Grand Average Networks
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(a) full-term Baseline (-200 to 0) (b) PreTerm Baseline (-200 to 0)

(c) full-term Tactile (171 to 240) (d) PreTerm Tactile (171 to 240)

(e) full-term Late Response (341 to
499)

(f) PreTerm Late Response (341 to
499)

Figure 4.4: Degree Distribution for Grand Average Networks
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4.4 Correlations with Biological Variables

We analyzed changes in Small World scores between baseline and both tactile networks

as an indication of organization change upon neural processing of a stimulus. As gestational

age at birth increased, Small World score in the large network decreased compared to

baseline (R=0.625, p<0.001) but Small World score in the small network increased (R=

-235, p = 0.03).
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Chapter 5: Discussions & Conclusion

This study demonstrated for the first time differences in functional and effective tactile

connectivity in full term and preterm infants using complex network analysis. Our baseline

network studied the resting state connections of neural signal amplitude as measured using

a high-density EEG array, prior to stimulation of the infant hand with a tactile stimulus. At

rest, the network exhibits a community structure with modularity increasing with increased

maturity at birth. This finding supports analytical work in adults, demonstrating hierarchy

of module organization and the economy of brain resources it promotes. It is likely that

this modular community structure develops into adulthood. Therefore our study suggests

that preterm brains may still be refining this structure. Certainly, work in resting state

connectivity using MRI supports evolving network organization in the somatosensory cortex.

A novel finding in our study is the observation that modularity of functional resting state

networks across term and preterm infants decrease during the tactile stimulus and increase

again during the late response.

In tactile window, we found two separate networks of disproportionate sizes. The smaller

network is likely to be the functional state network or the functional connectome, involved

in the tactile response. The results demonstrate the differences in neurological connectivity

between full-term and the pre-term infants in terms of their responses to tactile stimulus.

Post stimulus, the neural network tries to eventually regain its resting state topology. This
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resonates with the presence of transient negative shift, called afterhyperpolarization or the

action potential’s undershoot phase, post neuronal firing [9] [7]. We observed a smaller

functional connectome in full-term tactile windows indicating better efficiency in full-term

neural networks for the same task. The second network in tactile window is larger in

full-terms than preterms, maintaining a balance with its functional counterpart.

While this study presents for the first time a novel comparison of the functional and

effective tactile connectivity in the full-term and pre-term neural networks, considerations

about statistical testing methodology merit discussions. Challenges inherent in the method-

ology include the use of Spearman correlation to build the initial neural networks, instead

of Pearson’s correlation, given the latter’s assumption of data to have a linear relationship,

while the earlier being free from any such assumptions of linearity. Spearman correlation

is a non-parametric measure, assessing the strength of relationship between the variables,

described using a monotonic function. These concerns are not entirely unique to our method-

ology, but rather general. EEG data is known to follow non-normal distribution [50], which

limits the use of pearson correlation.

Another topic requiring careful consideration in building neural networks with such

kind of data is choosing an exact threshold or cutoff for number of edges in the network.

Thresholding at a fixed number of entities (here edges) is a flawed approach because of

its limitations and recalculation with the change in data points or scales. It is possible to

consider lesser or non-relevant edges with such an approach. Determining the value of

threshold for such a problem is also non-trivial because of limited availability of literature for

such a first of its kind study. We used percentage based adaptive thresholding as a solution

to this problem, making it problem specific rather than data specific. Considering 5% from

both the tails of data for constructing edges in the neural network ensures confinement of

42



both positive as well as negative correlations, while at the same time not being bound by the

resolution problems.

In conclusion, we provide the first evidence of differences in the functional and effective

tactile connectivity in the neural networks of full-term and preterm infants. We establish the

functional connectome involved in stimulus and show that it is different in the two cases.

Future work will address a bigger and even corpus of data from full-term and preterm infants,

along with analysis of multisensory stimulus. It would address the challenges involved

with different diseases among infants and also provide biomarkers for the same. It aims to

address the problem of learning disorder with a special focus on specific subjective studies,

helping us better understand the two brains and pointing out the problems early in childhood.

Another approach in this direction could also be to learn the signals from EEG using deep

learning techniques based on convolutional neural network, autoencoders and their other

variants. Training deep networks and scaling them to the level of handheld devices would

make bedside and offsite predictions of neurodevelopmental disorders possible, benefiting

countless infants secluded from healthcare services.
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[18] Krzysztof Choromański, Michał Matuszak, and Jacek Miekisz. Scale-free graph with
preferential attachment and evolving internal vertex structure. Journal of Statistical
Physics, 151(6):1175–1183, 2013.

[19] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[20] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, 2009.

[21] L. Douw, M. M. Schoonheim, D. Landi, M. L. van der Meer, J. J. Geurts, J. C.
Reijneveld, M. Klein, and C. J. Stam. Cognition is related to resting-state small-world
network topology: an magnetoencephalographic study. Neuroscience, 175:169–77,
2011.

45



[22] M. Elsabbagh and M. H. Johnson. Getting answers from babies about autism. Trends
Cogn Sci, 14(2):81–7, 2010.

[23] D. A. Fair, A. L. Cohen, J. D. Power, N. U. F. Dosenbach, J. A. Church, F. M. Miezin,
B. L. Schlaggar, and S. E. Petersen. Functional brain networks develop from a "local
to distributed" organization. Plos Computational Biology, 5(5), 2009.

[24] D. A. Fair, N. U. Dosenbach, J. A. Church, A. L. Cohen, S. Brahmbhatt, F. M. Miezin,
D. M. Barch, M. E. Raichle, S. E. Petersen, and B. L. Schlaggar. Development of
distinct control networks through segregation and integration. Proc Natl Acad Sci U S
A, 104(33):13507–12, 2007.

[25] Y. Fan, F. Shi, J. K. Smith, W. Lin, J. H. Gilmore, and D. Shen. Brain anatomical
networks in early human brain development. Neuroimage, 54(3):1862–71, 2011.

[26] P. Fransson, U. Aden, M. Blennow, and H. Lagercrantz. The functional architecture of
the infant brain as revealed by resting-state fmri. Cereb Cortex, 21(1):145–54, 2011.

[27] D. C. Geary and K. J. Huffman. Brain and cognitive evolution: forms of modularity
and functions of mind. Psychol Bull, 128(5):667–98, 2002.

[28] Patric Hagmann, Olaf Sporns, Neel Madan, Leila Cammoun, Rudolph Pienaar, Van Jay
Wedeen, Reto Meuli, J-P Thiran, and PE Grant. White matter maturation reshapes
structural connectivity in the late developing human brain. Proceedings of the National
Academy of Sciences, 107(44):19067–19072, 2010.

[29] M. G. Hart, R. J. Ypma, R. Romero-Garcia, S. J. Price, and J. Suckling. Graph
theory analysis of complex brain networks: new concepts in brain mapping applied to
neurosurgery. J Neurosurg, 124(6):1665–78, 2016.

[30] Mark D Humphries and Kevin Gurney. Network ‘small-world-ness’: a quantitative
method for determining canonical network equivalence. PloS one, 3(4):e0002051,
2008.

[31] M. H. Johnson. Functional brain development in humans. Nat Rev Neurosci, 2(7):475–
83, 2001.

[32] Mark H Johnson, Michelle de Haan, Andrew Oliver, Warwick Smith, Haralambos
Hatzakis, Leslie A Tucker, and Gergely Csibra. Recording and analyzing high-density
event-related potentials with infants using the geodesic sensor net. Developmental
Neuropsychology, 19(3):295–323, 2001.

[33] Nancy Aaron Jones, T Field, Nathan A Fox, M Davalos, and Charlemagne Gómez.
Eeg during different emotions in 10-month-old infants of depressed mothers. Journal
of Reproductive and Infant Psychology, 19(4):295–312, 2001.

46



[34] Jongkwang Kim and Thomas Wilhelm. What is a complex graph? Physica A:
Statistical Mechanics and its Applications, 387(11):2637–2652, 2008.

[35] H. J. Larsson, W. W. Eaton, K. M. Madsen, M. Vestergaard, A. V. Olesen, E. Agerbo,
D. Schendel, P. Thorsen, and P. B. Mortensen. Risk factors for autism: perinatal
factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol,
161(10):916–25; discussion 926–8, 2005.

[36] D Lehmann and W Skrandies. Reference-free identification of components of
checkerboard-evoked multichannel potential fields. Electroencephalography and
clinical neurophysiology, 48(6):609–621, 1980.

[37] Y. Liu, M. Liang, Y. Zhou, Y. He, Y. Hao, M. Song, C. Yu, H. Liu, Z. Liu, and T. Jiang.
Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4):945–61, 2008.

[38] N. L. Maitre, A. P. Key, O. D. Chorna, J. C. Slaughter, P. J. Matusz, M. T. Wallace, and
M. M. Murray. The dual nature of early-life experience on somatosensory processing
in the human infant brain. Curr Biol, 27(7):1048–1054, 2017.

[39] Jon K. Maner, J. Anthony Richey, Kiara Cromer, Mike Mallott, Carl W. Lejuez,
Thomas E. Joiner, and Norman B. Schmidt. Dispositional anxiety and risk-avoidant
decision-making. Personality and Individual Differences, 42(4):665–675, 3 2007.

[40] Sifis Micheloyannis, Ellie Pachou, Cornelis Jan Stam, Michael Breakspear, Panagiotis
Bitsios, Michael Vourkas, Sophia Erimaki, and Michael Zervakis. Small-world net-
works and disturbed functional connectivity in schizophrenia. Schizophrenia research,
87(1):60–66, 2006.

[41] S. P. Miller, V. Ramaswamy, D. Michelson, A. J. Barkovich, B. Holshouser, N. Wycliffe,
D. V. Glidden, D. Deming, J. C. Partridge, Y. W. Wu, S. Ashwal, and D. M. Ferriero.
Patterns of brain injury in term neonatal encephalopathy. J Pediatr, 146(4):453–60,
2005.

[42] Micah M Murray, Denis Brunet, and Christoph M Michel. Topographic erp analyses:
a step-by-step tutorial review. Brain topography, 20(4):249–264, 2008.

[43] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A.-L. Barabási. Structure and tie strengths in mobile communication networks.
Proceedings of the National Academy of Sciences, 104(18):7332–7336, 2007.

[44] Sarah J Paterson, Sabine Heim, Jennifer Thomas Friedman, Naseem Choudhury, and
April A Benasich. Development of structure and function in the infant brain: Impli-
cations for cognition, language and social behaviour. Neuroscience & Biobehavioral
Reviews, 30(8):1087–1105, 2006.

47



[45] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A. Church, A. C.
Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, and S. E. Petersen. Functional
network organization of the human brain. Neuron, 72(4):665–78, 2011.

[46] J. D. Power, D. A. Fair, B. L. Schlaggar, and S. E. Petersen. The development of
human functional brain networks. Neuron, 67(5):735–48, 2010.

[47] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz.
Generalizations of the clustering coefficient to weighted complex networks. Physical
Review E, 75(2):027105, 2007.

[48] Olaf Sporns. Networks of the brain: quantitative analysis and modeling. Report, 2010.

[49] K. Supekar, M. Musen, and V. Menon. Development of large-scale functional brain
networks in children. PLoS Biol, 7(7):e1000157, 2009.

[50] SJ Van Albada and PA Robinson. Transformation of arbitrary distributions to the nor-
mal distribution with application to eeg test–retest reliability. Journal of neuroscience
methods, 161(2):205–211, 2007.

[51] M. P. van den Heuvel, R. C. Mandl, R. S. Kahn, and H. E. Hulshoff Pol. Functionally
linked resting-state networks reflect the underlying structural connectivity architecture
of the human brain. Hum Brain Mapp, 30(10):3127–41, 2009.

[52] M. P. van den Heuvel and O. Sporns. Network hubs in the human brain. Trends Cogn
Sci, 17(12):683–96, 2013.

[53] S. Vanhatalo and K. Kaila. Development of neonatal eeg activity: from phenomenology
to physiology. Semin Fetal Neonatal Med, 11(6):471–8, 2006.

[54] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of /‘small-world/’
networks. Nature, 393(6684):440–442, 06 1998.

thmtypetheorem

48



Appendix A: Basics of Graph Theory

Adopted from: Kierstead H.A. Graph Theory Notes. School of Mathematical and Statistical

Sciences, Arizona State University.

https://math.la.asu.edu/∼halk/598Fol/(2015)MAT513Lectures.pdf, 2016

A.1 Introduction

A.1.1 Graphs

Formally a graph is an ordered pair G = (V,E) where E is an irreflexive, symmetric,

binary relation on V . Since E is symmetric there is no need to keep track of the order of

pairs (x,y) ∈ E; since it is irreflexive there are no ordered singletons (x,x) in E. This leads

to a more intuitive formulation. We take E to be a set of unordered pairs of elements from V .

Elements of V are called vertices; elements of E are called edges. If x,y ∈V are vertices and

{x,y} ∈ E is an edge we usually (but not always) denote {x,y} by the shorthand notation xy.

So xy = {x,y}= {y,x}= yx. The vertices x and y are called ends, or endpoints, of the edge

xy. The ends x and y of an edge xy are said to be adjacent and the end x is said to be incident

to the edge xy. We also say that x and y are joined (not connected) by the edge xy. Two

edges are said to be adjacent if they have a common end. In this course, all graphs have a

finite number of vertices, unless it is explicitly stated that they have infinitely many. Graphs

are illustrated by drawing dots for vertices and connecting adjacent edges by lines or curves.
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Our definition of graph is what the text calls a simple graph. Most of the time we

will only be interested in simple graphs, and so we begin with the simplest definition.

When necessary, we will introduce the more complicated notions of directed graphs and

multigraphs, but here is a quick hint. A directed graph G = (V,E) is any binary relation (not

necessarily irreflexive or symmetric) on V . In other words E is any set of ordered pairs of

vertices. If E is a multiset then G is called a directed multigraph. If E is a set of subsets of

V then G is called a hypergraph.

The study of graph theory involves a huge number of of parameters—see the front and

back inside covers of the text. This can be quite daunting. My strategy is to introduce these

parameters as they are needed. Please feel free to interrupt lectures to be reminded of their

meanings. Most of the time my notation will agree with the text, and I will try to emphasize

differences. Next we introduce some very basic notation.

Given a graph G, V (G) denotes the set of vertices of G and E(G) denotes the set of

edges of G. Set |G| := |V (G)| and ‖G‖ := |E(G)|. This is not standard, and instead the

book uses v(G) = |V (G)| and e(G) = |E(G)|. Suppose v ∈V (G) is a vertex of G. Define

NG(v) := {w ∈V (G) : vw ∈ E(G)}; EG(v) := {e ∈ E(G) : v is an end of e}.

The set NG(v) is called the (open) neighborhood of v, and its elements are called neighbors

of v. So a vertex w is a neighbor of v iff it is adjacent to v. When there is no confusion

with other graphs the subscript G is often dropped. The closed neighborhood of v is

N[v] := N(v)∪{v}—we dropped the subscript. The set EG(v) is the set of edges incident

to v; again, we may drop the subscript G. The text does not provide notation for this set.

For simple graphs |N(v)|= |E(v)|. However for multigraphs this may note hold, since two

vertices might be joined by several edges. With this in mind, define the degree of a vertex v

to be dG(v) := |EG(v)|, but not that for simple graphs dG(v) = |NG(v)|.

50



Finally we mention some simple set theoretic notation. The sets of natural numbers,

integers and positive integers are denoted, respectively, by N, Z and Z+. For n ∈ N set

[n] := {1,2, . . . ,n}; in particular [0] = /0. For a set X and an element y, set X + y := X ∪{y}

and X− y := Xr{y}.

A.1.2 Proofs by Mathematical Induction

Most proofs in graph theory involve mathematical induction, or at least the Least Element

Axiom. Here we quickly review this technique. Also see the discussion in the text on page

72, and especially the induction trap on page 107.

[Axiom][Least Element Axiom]Every nonempty set of natural numbers has a least

element.

Let S be a set of natural numbers and B = NrS. We would like to prove that S = N and

B = /0. Here is a way to organize the proof.

Theorem 1 (Principle of Induction). Suppose S⊆ N, and every n ∈ N satisfies,

if k ∈ S for every natural number k < n, then n ∈ S. (A.1.1)

Then S = N.

Proof. Consider any set S ⊆ N such that (A.1.1) holds for all n ∈ N, and let B = Nr S.

Arguing by contradiction, assume that B is nonempty. Then it has a least element l. Since

l is the least element of B, every natural number less than l is in S. Applying (A.1.1) to l

yields l ∈ S, a contradiction.

Using the Principle of Induction to prove that S =N, it suffices to prove (A.1.1) holds for

all natural numbers n. Notice that the hypothesis of (A.1.1) always holds for n = 0 (why?),
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and so, if (A.1.1) holds for n = 0 then 0 ∈ S. But in applications, checking (A.1.1) for n = 0

is usually a special case. Here is an example.

Theorem 2. Every natural number greater than 1 has a prime factor.

Proof. Let S = {n ∈ N : n≤ 1 or n has a prime factor}. It suffices to show A.1.1. Consider

any n ∈ N such that k ∈ S for every natural number less than n. We must show n ∈ S. If

n≤ 1 then n ∈ S by definition. So suppose n≥ 2. If n is prime then it is a prime factor of

itself, and so it is in S. Otherwise, there exist integers a,b such that 1 < a,b < n and ab = n.

Since a < n, we have a ∈ S. Since 1 < a this means that a has a prime factor p. Since p is a

factor of a and a is a factor of n, p is a (prime) factor of n.

A.1.3 Ramsey’s Theorem for Graphs

Ramsey’s Theorem is an important generalization of the Pigeonhole Principle. Here we

only consider its simplest version applied to graphs.

Let G = (V,E) be a graph, and suppose X ⊆V . The set X is a clique in G if xy∈ E for all

vertices x,y ∈ X . It is an independent set, or coclique, in G if xy /∈ E for all vertices x,y ∈ X .

A clique (coclique) X is a b-clique (b-coclique) if |X |= b. Let ω(G) := max{|X | : X is a

clique in G}, and α(G) := max{|X | : X is a coclique in G}.

A graph H is a subgraph of G, denoted H ⊆ G, if V (H)⊆V (G) and E(H)⊆ E(G). It

is an induced subgraph of G if H ⊆ G and E(H) = {xy ∈ E(G) : x ∈V (H) and y ∈V (H)}.

For X ⊆V , G[X ] is the induced subgraph of G that has vertex set X . The complement of G

is the graph, G := (V (G),E(G)), where E := {xy : xy /∈ E and x,y ∈V (G)}.

Theorem 3 (Ramsey’s Theorem). For all graphs G and a,b ∈ N, if |G| ≥ 2a+b−2 then

ω(G)≥ a or α(G)≥ b.
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Proof. Argue by induction on n = a+ b. (That is, let S be the set of natural numbers n

such that for all positive integers a,b if n = a+b, and G is a graph with |G| ≥ 2a+b−2 then

ω(G)≥ a or α(G)≥ b. Show that for all n ∈N, if k ∈ S for all k ∈N with k < n then n ∈ S.)

Consider any n = a+b with a,b ∈ Z+, and any graph G with |G| ≥ 2a+b−2.

Base step: min{a,b} = 1. Since |G| ≥ 2a+b−2 ≥ 1, G has a vertex v. Since {v} is both a

clique and an independent set, both ω(G)≥ 1 and α(G)≥ 1. So we are done regardless of

whether a = 1 or b = 1.

Induction Step: min{a,b} ≥ 2 (so a−1,b−1 ∈ Z+). (We assume the induction hypothesis:

the theorem holds for all a′,b′ ∈ Z+ with a′+b′ < a+b.) Let v ∈V (G). Then

1+dG(v)+dG(v) = |G| ≥ 2a+b−2 = 2a+b−3 +2a+b−3.

By the pigeonhole principle, either dG(v)≥ 2a+b−3 or dG(v)≥ 2a+b−3.

Case 1: dG(v) ≥ 2a+b−3. Set H := G[NG(v)]. Then |H| = dG(v) ≥ 2a−1+b−2. By the

induction hypothesis H contains an (a−1)-clique X or a b-coclique Y. In the latter case Y

is a b-coclique in G. In the former case X + v is an a-clique in G.

Case 2: dG(v) ≥ 2a+b−3. Set H := G[NG(v)]. Then |H| ≥ 2a+b−1−2. By the induction

hypothesis H contains an a-clique X or a (b−1)-coclique Y . In the former case, X is an

a-clique in G. In the latter case Y + v is a b-coclique in G.

A.1.4 Graph Isomorphism and the Reconstruction Conjecture

In order to study graph theory we need to know when two graphs are, for all practical

purposes, the same.

Definition 4. Two graphs G and H are isomorphic if there exists a bijection

f : V (G)→V (H) such that for all x,y ∈V (G),xy ∈ E(G) iff f (x) f (y) ∈ E(H).
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NG(v)

VG(v)

G: v

Figure A.1.1: Ramsey’s Theorem

H = = J

Figure A.1.2: The vertex deleted subgraphs of a graph G. What is |G|? What is ‖G‖? What
is the isomorphism type of G?

In this case we say that f is an isomorphism from G to H and write G∼=H. The isomorphism

relation is an equivalence relation on the class of graphs. The equivalence classes of this

relation are called isomorphism types. In graph theory we generally do not differentiate

between two isomorphic graphs. We say that H is a copy of G to mean that G∼= H.

If x is a vertex of a graph G then G− x is the induced subgraph G[V (G)− x].

Definition 5. A multiset of vertex deleted subgraphs of a graph G = (V,E) is a multiset G

such that there exists a bijection ψ : V → G with ψ(x)∼= G− x for all x ∈V .

Notice that G has infinitely many multisets of vertex deleted subgraphs, but everyone

satisfies |G |= |G|; some graphs may appear several times in the multiset G . However, we

cannot determine V (G) from G . The following famous conjecture asks whether we can

determine the isomorphism type of G from G .
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Conjecture 6 (Reconstruction Conjecture). Let G be an unknown graph with |G| ≥ 3. Given

a complete set of vertex deleted subgraphs of G (but not G) it is possible to construct a

graph H that is isomorphic to G.

For (v,e) ∈V ×E, set

ι(v,e) :=

{
1 if e ∈ E(v)
0 otherwise

=

{
1 if v ∈ e
0 otherwise.

Proposition 7 (Handshaking). Every graph G := (V,E) satisfies ∑v∈V d(v) = 2‖G‖. In

particular, G has an even number of vertices with odd degree.

Proof.

∑
v∈V

d(v) = ∑
v∈V

∑
e∈E

ι(v,e) = ∑
e∈E

∑
v∈V

ι(v,e) = ∑
e∈E

2 = 2‖G‖ .

Proposition 8. For every graph G = (V,E) with |G| ≥ 3 and every vertex v ∈V ,

‖G‖= ∑v∈V ‖G− v‖
|G|−2

and dG(v) = ‖G‖−‖G− v‖ .

Proof. Every edge e ∈ E satisfies e ∈ E(G− v) if and only if ι(v,e) = 0. Thus

∑
v∈V
‖G− v‖= ∑

v∈V
∑
e∈E

(1− ι(v,e)) = ∑
e∈E

∑
v∈V

(1− ι(v,e)) = ∑
e∈E

(|G|−2) = ‖G‖(|G|−2).

So the first equality holds. The second equality follows from E = E(G− v)∪E(v).

Example 9. Suppose G is the multiset consisting of 2 copies of H and 4 copies of J as

shown in Figure A.1.2. Find (with proof) a graph G such that if the multiset of vertex deleted

subgraphs of G′ is G then G′ ∼= G.

Solution. Let G = (V,E) be an arbitrary graph for which G is a multiset of vertex deleted

subgraphs. Then |G|= |G |= 6. Using Proposition 8, we have:

‖G‖= (2‖H‖+4‖J‖)/(|G|−2) = (2 ·6+4 ·5)/4 = 8,
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if G− x∼= H then dG(x) = 8−‖H‖= 2, and if G− y∼= J then dG(y) = 8−‖J‖= 3. So G

has two vertices with degree 2 and four vertices with degree 3. Choose x∈V with G−x∼= H.

By inspection, G− x has a unique vertex z with two neighbors w1,w2 in G− x such that

dG−x(w1) = 3 = dG−x(w2). It suffices to show

NG(x) = (V rNG−x[z])− x :

If G′ = (V ′,E ′) is another graph for which G is a multiset of vertex deleted subgraphs then

there exist distinct x′,z′ ∈ V ′ such that G′− x′ ∼= H, and z′ is the unique vertex in G′− x′

with two neighbors w′1,w
′
2 in G−x such that dG′−x′(w′1) = 3 = dG′−x′(w′2). So G−x∼= H ∼=

G′− x′. Let ψ be an isomorphism from G to G′. Then ψ(z) = z′, ψ(NG−x[z]) = NG′−x′[z′]),

and ψ(NG(x)) = NG′−x′(x′). Thus ψ can be extended to an isomorphism from G to G′ by

mapping x to x′.

Since all v ∈ V − x satisfy NG−x(v) ⊆ NG(v), for all i ∈ [2] we have 3 = dG−x(wi) ≤

dG(wi)≤ 3, and so

NG−x(wi) = NG(wi). (A.1.2)

Every vertex of G−x−z has degree 2, but J has a unique vertex with degree 1, and removing

it leaves another vertex with degree 1. Thus G− x− z* G− y∼= J. So G− z� J. The only

other possibility is that G− z∼= H. Thus 2≤ dG−x(z)≤ dG(z) = 2, and so

NG−x(z) = NG(z). (A.1.3)

By (A.1.2) and (A.1.3), NG(x)∩NG[z] = /0. Since dG(x) = 2, NG(x) = (V rNG−x[z])− x.

See Figure A.1.3.
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Figure A.1.3: Discovered graph G

A.1.5 Paths, Cycles, Complete Graphs, Petersen’s Graph and Decom-
positions

A path is a graph P = (V,E) such that V can be ordered as v1, . . . ,v|P| so that E =

{vivi+1 : i∈ [|G|−1]}. The length of the path P is ‖P‖. Clearly, any two paths with the same

length are isomorphic. We use the notation Pn to denote a fixed path of length n−1. Then if

P is a path of length n−1, we say that P is a copy of Pn, or more carelessly P = Pn. We write

v1v2 . . .vn (without commas) to denote a copy of Pn whose edge set is {vivi+1 : i ∈ [n−1]}.

Suppose H ⊆ G are graphs. A path P ⊆ G is an H-path if its ends, but not its internal

vertices, are contained in V (H). An x,y-path is a path whose first vertex is x and whose last

vertex is y.

A cycle is a graph C formed by adding the additional edge v1vn to a path v1v2 . . .vn with

n≥ 3. Again, the length of C is ‖C‖. Clearly any two cycles with the same length are

isomorphic. We use the notation Cn for a fixed cycle of length n. We write v1v2 . . .vnv1 to

denote a copy of Cn whose edge set is {vivi⊕1 : i ∈ [n]}, where ⊕ denotes addition modulo

n. The girth of a graph G is the length of its shortest cycle C with C ⊆ G, if there is one;

otherwise the girth is infinity.

A complete graph is a graph K = (V,E) such that xy ∈ E for all x,y ∈ V . We use the

notation Kn for a fixed complete graph with n vertices. Notice that the vertices of a complete

graph are a clique. Then Kn is a graph with n vertices and no edges, and the vertices of Kn are

a coclique. We call Kn the empty graph. Finally we introduce some notation not in the text:
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K(A,B) denotes the graph (V,E) such that V = A∪B and E = {ab : a 6= b∧ (a,b) ∈ A×B}.

Then K(A,A) denotes a complete graph whose vertex set is A; we abbreviate this by K(A).

Finally, for a,b ∈ Z+, let Ka,b denote a fixed graph of the form K(A,B), where |A| = a,

|B|= b, and A∩B = /0. Such a graph is called a complete bipartite graph. (We will have

more to say about bipartite graphs shortly.)

The Petersen graph has the form (
([5]

2

)
,{AB : A∩B = /0,A,B ∈

([5]
2

)
}).

Definition 10. A decomposition of a graph G is a set of subgraphs such that each edge of G

appears in exactly one subgraph of the set.

Example 11. K4 can be decomposed into two P4’s; it can also be decomposed into three

P3’s, and into K3,K1,3.

A.1.6 Connection in graphs

Definition 12. A walk (in a graph G) is a sequence (list) W = v1v2 . . .vn of not necessarily

distinct vertices such that vivi+1 is an edge for each i ∈ [n− 1]. If the vertices of W are

distinct then W is just a path. If v1 = vn then W is closed; otherwise it is open. If W is

open then v1 and vn are its ends, and v2, . . . ,vn−1 are its internal vertices. If all the edges

vivi+1 are distinct then W is a trail. Of course, if the vertices of W are distinct then W is a

path. The length of W is n−1. The walk W is a u,v-walk (trail,path) if u = v1 and v = vn.

The trivial walk v1 of length 0 is closed. We say that W contains a walk W ′ if there exists

a subsequence W ′ = vi1vi2 . . .vis such that W ’ is a walk, and each edge vihvih+1 of W has

the form v jv j+1 for some j ∈ [n−1]. We use the notation Wv j,viWv j,viW to indicate the

subwalks v1 . . .v j,vi . . .v j,vi . . .vn. Also W ∗ := vnvv−1 . . .v1.

Lemma 13. Every open u,v-walk W = v1 . . .vn contains a u,v-path.
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Proof. We argue by induction on the length l of W . If W is a path then we are done.

Otherwise, there exist i, j ∈ [n] with i < j such that vi = v j. Then l > 1 and W ′ = v1 . . .vi(=

v j)v j+1 . . .vn is a shorter u,v-walk contained in W . By the induction hypothesis W ′ contains

a u,v-path P. Clearly, P is also contained in W .

Definition 14. A graph G is connected if for any two distinct vertices u,v there exists a u,v-

walk. If there exists a u,v-walk then u is connected to v, regardless of whether uv ∈ E(G).

The connection relation is the set of ordered pairs (u,v) of V (G) such that there exists a

u,v-path in G.

Proposition 15. The connection relation is an equivalence relation.

Definition 16. A component of G is a subgraph H = G[X ] induced by an equivalence class

X of the connection relation.

A.1.7 Bipartite graphs

Definition 17. Let E(A,B) denote the set of edges with one end in A and one end in B. A

graph G = (V,E) is bipartite if it has a bipartition, that is a partition of V into one or two

independent sets. This means that E = /0 or there exists a partition {A,B} of V (V = A∪B,

A∩B = /0) such that both A and B are independent, or equivalently E = E(A,B). Notice that

a graph is bipartite if and only if it is a subgraph of a complete bipartite graph.

Many theorems in graph theory assert the existence of some special structure in a graph—

say a bipartition. To show that a particular graph has such a structure it is enough to make

a lucky random guess, and check that your guess provides the structure. In general, it is

much harder to show that a graph does not have the desired structure. Typically this would

require an exhaustive search of exponentially many possibilities—say all 2|G| partitions of
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the vertices into at most two parts. However for some structures we can prove the existence

of obstructions with the property that every graph either has the structure or it has an

obstruction, but not both. In this case, a lucky guess of an obstruction provides a proof that

the structure does not exist. Theorem 22 is an example of this phenomenon.

Definition 18. A path, cycle, trail, walk W is even (odd) if its length is even (odd).

Lemma 19. Every odd closed walk W = v1 . . .vnv1 contains an odd cycle.

Proof. Argue by induction on the length of W . If W is a cycle we are done. Otherwise there

exist positive integers i < j such that vi = v j. Then W ′ := v1 . . .vi(= v j)v j+1 . . .vnv1 and

W ′′ := vivi+1 . . .v j(= vi) are shorter closed walks, both contained in W , and one of them

must be odd. By the induction hypothesis, the odd one contains an odd cycle, which is also

contained in W .

Theorem 20. A graph G = (V,E) is bipartite iff it has no odd cycles.

Proof. Necessity. Suppose G is bipartite with bipartition {A,B}. It suffices to show that if

C ⊆ G is a cycle then it is even. Since G is bipartite, E(C) ⊆ E ⊆ E(A,B). So each edge

e ∈ E(C) has exactly one end in A. Thus the length of C is the even number

‖C‖= ∑
e∈E

∑
v∈A∩V (C)

ι(v,e) = ∑
v∈A∩V (C)

∑
e∈E

ι(v,e) = ∑
v∈A∩V (C)

dC(v) = 2|A∩V (C)|.

Sufficiency. Suppose G contains no odd cycle. It suffices to show that each component

of G is bipartite (why?). So consider a component H of G, and let x ∈V (H). Set

A := {v ∈V (H) : there exists an odd x,v-walk in H} and

B := {v ∈V (H) : there exists an even x,v-walk in H}.
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Since H is a component of G, it is connected, and so A∪B =V (H). If there exists v ∈ A∩B

then there exists an odd x,v-walk P and an even x,v-walk Q. Then W = xPvQ∗x is an odd

closed walk. By Lemma 19 there exists an odd cycle C ⊆W ⊆ G. Since this is impossible,

A∩B = /0. Similarly, if uv ∈ ErE(A,B) then there exist paths xPu and xQv with the same

parity. Thus W = xPuvQ∗x is an odd closed walk; so there exists an odd cycle C ⊆W ⊆ G,

another contradiction. We conclude that {A,B} is a bipartition of G.

A.1.8 Dirac’s Theorem

Let G = (V,E) be a graph, and suppose A,B ⊆ V . An A,B-walk is a walk whose first

vertex is in A, whose last vertex is in B and whose interior vertices are in neither A nor B. If

A = {a} or B = {b}, we may shorten this notation to an a,B-walk or an A,b-walk. Similarly,

if A = B, we may shorten it to a B-walk. Also, if H ⊆ G an H-walk is a V (H)-walk, etc.

The minimal degree of G is δ (G) = min{d(v) : v ∈V}. Similarly, the maximum degree

of G is ∆(G) = max{d(v) : v ∈V}.

An embedding of H into G is an isomorphism from H to a subgraph of G. If there exists

an embedding of H in G then we say that H can be embedded in G, or that H is embeddable

in G. A subgraph H ⊆ G is said to be a spanning subgraph of G if V (H) = V (G). A

spanning cycle of G is called a hamiltonian cycle. If G contains a hamiltonian cycle, G is

said to be hamiltonian.

Many questions in graph theory have the following form: Given two graphs G and H

with |H| = |G| what “local” conditions on G ensure that H is embeddable in G? If G is

complete then trivially H is embeddable in G. This is guaranteed by the local condition

δ (G) = |G|−1. But in many cases we can do better. Corollaries 22, 23, below are examples.
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Theorem 21. Every connected graph G = (V,E) with |G| ≥ 3 contains a path or cycle of

length at least l = min{|G|,d(x)+d(y) : xy /∈ E}.

Proof. Let P = v1 . . .vt be a path in G with maximum length. Then N(v1),N(vt) ⊆ V (P),

since otherwise we could extend P to a longer path. If P has length ‖P‖ ≥ l then we are

done. Otherwise we prove:

G contains a cycle C = (u1 . . .ut)with V (C) =V (P). (A.1.4)

If v1vt ∈ E then C := v1Pvnv1 is the desired cycle. Otherwise, v1vt /∈ E and so

t = ‖P‖+1≤ l ≤ d(v1)+d(vt). (A.1.5)

Let

X = {i ∈ [t] : v1vi+1 ∈ E} and Y = {i ∈ [t] : vtvi ∈ E}.

Then |X |= d(v1), |Y |= d(vt), and X ∪Y ⊆ [t−1]. By (A.1.5) and inclusion-exclusion:

t−1≥ |X ∪Y |= |X |+ |Y |− |X ∩Y | ≥ t−|X ∩Y |

|X ∩Y | ≥ 1.

Let i ∈ X ∩Y . See Figure ??. Then C = v1vi+1 . . .vtvi . . .v1 is a cycle that spans P,

proving (A.1.4).

Since l ≤ |G| and |C| = ‖C‖, it suffices to show |G| = |C|. Otherwise, there exists

x ∈V −V (C). Since G is connected, there is an x,C-path Q = x . . .u1. Choose notation so

that C = u1 . . .utu1. Then P′ = Qu1u2 . . .ut is a longer path than P, a contradiction.

Corollary 22 (Dirac’s Theorem (1952)). If δ (G)≥ 1
2 |G|> 1 then G is hamiltonian.
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Proof. By Theorem 21, it suffices to prove that G is connected. Consider any distinct

vertices x and y. Then

|G| ≥ |N[x]∪N[y]|= |N[x]|+ |N[y]|− |N[x]∩N[y]| ≥ |G|+2−|N[x]∩N[y]|

|N[x]∩N[y]| ≥ 2.

So x is connected to y by a path of length at most 2.

Here is a weaker, but slightly less “local” condition that also ensures a graph is hamilto-

nian.

Corollary 23 (Ore’s Theorem (1960)). If G is a graph with d(x)+d(y)≥ |G| ≥ 3 for all

distinct nonadjacent vertices x an y then G is hamiltonian.

Proof. We must show that G is connected. If x is adjacent to y they are connected. Otherwise

apply the above argument.

A.1.9 Even graphs and Euler’s Theorem

Definition 24. A graph is Eulerian if it has a closed trail containing all edges. (Note that

T = v is closed, since its only vertex is its first and its last.) Such a trail is said to be an

Eulerian trail. An even graph is a graph whose vertices all have even degree.

For H ⊆ G and v ∈V (G)rV (H), set dH(v) := 0.

Fact 25. If H and G are even graphs with H ⊆ G then H ′ := G−E(H) is even.

Proof. Since G and H are even, every v ∈V (G) satisfies

dH ′(v) = dG(v)−dH(v)≡ 0 mod 2.
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Proposition 26. Let T = v1...vt be a trail in a graph G. Then d(v) ≡ 0 mod 2 for every

vertex v, except that if T is open then d(v1)≡ 1≡ d(vt) mod 2.

Proof. If T is open then set T ′ := T vnv1; otherwise T ′ := T. Regardless, T ′ is closed. It

suffices to show that every vertex vi satisfies dT ′(vi) ≡ 0 mod 2, since dT (vi) 6≡ dT ′(vi)

mod 2 if and only if i ∈ {1,n} and v1 6= vn. We argue by induction on t.

If T ′ is a cycle, or t = 1, then every vertex vi satisfies dT ′(vi) ≡ 0 mod 2. Otherwise,

there exist 1 < i < j ≤ t with vi = v j. Let v1T1 = T ′vi + v jT ′v1 and T2 = viT ′v j. Then T1

and T2 are both closed and every edge of T ′ is in exactly one of T1 and T2. By the induction

hypothesis applied to T1 and T2,

dT ′(v) = dT1(v)+dT2(v)≡ 0+0≡ 0 mod 2.

Theorem 27 (Euler (1736)). A graph G is Eulerian iff it has at most one nontrivial compo-

nent and it is even.

Proof. Necessity. Suppose G has a Eulerian trail T . Since T is connected it only contains

edges from one component. Since T contains all edges, G has only one nontrivial component.

Since T is closed and contains all edges of G, Proposition 26 implies every vertex of G has

even degree (possibly 0).

Sufficiency. Suppose that G has at most one nontrivial component H and every vertex has

even degree. Let T = v1 . . .vt be a maximum length trail in G. Then T is closed: Otherwise

vt is incident to an odd number of edges of T by Proposition 26. Since d(vt) is even it is

incident to some edge vtv that is not in T . So we can extend T to T+ = v1T vtv, contradicting

the maximality of T .
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It remains to show that E(H)⊆ E(T ). Otherwise there is an edge ab ∈ E(H)rE(T ).

Since H is connected there is an {a,b},T -path P with no edge in T . Choose notation so that

P = b . . .vi. By definition, a /∈V (P) (but maybe b = vi). Since T is closed, T+ = abPviT vi

is a longer trail than T , a contradiction.

Lemma 28. Every graph G with δ (G)≥ 2 contains a cycle.

Proof. Let P = v1 . . .vt be a maximum path in G. Then N(vt) ⊆ V (P). So there exist

i < t−1 such that vtvi ∈ E(G). Thus viPvtvi is a cycle contained in G.

Corollary 29. If G is an even graph with ‖G‖> 0 then G contains a cycle.

Proof. Some component H of G contains an edge. Since H is connected, δ (H)≥ 1. Since G

is even this can be strengthened to δ (H)≥ 2. So by Lemma 28, H ⊆G contains a cycle.

Second proof of Theorem 27 (Sufficiency). Suppose G is even and has at most one nontrivial

component G′. We argue by induction on ‖G′‖. If G′ is a cycle or ‖G′‖= 0, then the cycle

or any vertex is the Eulerian trail.

Otherwise, by Corollary 29, G′ contains a cycle C. Let H be a nontrivial component

of G′−E(C) (maybe H = G′−E(C)), and set H ′ = G′−E(H). Both H and H ′ are even.

Also H ′ is connected, since all components of G′−E(C) that are contained in H ′ are

connected to each other in H ′ by edges of C. Moreover, ‖H‖ = ‖G′‖−‖C‖ < ‖G′‖ and

‖H ′‖ = ‖G′‖−‖H ′‖ < ‖G′‖. So H and H ′ are even connected graphs with fewer edges

than G′. By the induction hypothesis H and H ′ contain trails Eulerian trails T and T ′.

Moreover, T contains a vertex v1 ∈C and T ′ contains all vertices of C. Choose notation so

that T = v1 . . .vnv1 and T ′ = v1u2 . . .umv1. Then v1T vnv1T ′umv1 is an Eulerian trail in G′,

and G.

65



Theorem 30. A connected graph G with exactly q vertices of odd degree decomposes into

max{1, q
2} trails.

Proof. By Lemma 7, q is even. Let G+ be the result of adding a new vertex v+ to G so

that N(v+) is the set of vertices with odd degree in G. Since q is even, and every v ∈V (G)

satisfies dG+(v)≡ dG(v)+1 mod 2 if and only if dG(v) is odd, G+ is even. By Theorem 27,

G+ has an Eulerian Trail T . Removing v+ partitions T into q
2 trails that decompose G.

Alternatively, we could have proved Theorem 30 by adding q edges connecting disjoint

pairs of odd degree vertices.

A.2 Cut-vertices, -edges and trees

Definition 31. A cut-vertex is a vertex in a graph G is a vertex such that G− v has more

components than G. Similarly, a cut-edge is an edge of G such that G− e has more

components than G.

Theorem 32. An edge e = xy in G is not a cut-edge iff it belongs to a cycle.

Proof. Necessity. Suppose e is on a cycle C in a component H of G. It suffices to show

that there exists a u,x-walk W in H− e for all u ∈V (H). Since H is connected it contains a

u,x-walk W ′. If e /∈W ′ then set W :=W ′; otherwise set W := uWy(C− e)x. Here we have

used that C− e is a path.

Sufficiency. Suppose e is not a cut edge. Then there exists an x,y-path P in G− e. Then

xPyx is a cycle in G.

Theorem 33. If P = v1 . . .vt is a maximal path in G with t ≥ 2 then its ends are not cut-

vertices of G.
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Proof. By maximality, N[v1]⊆ P. Suppose u is a vertex in the component H of G containing

v1. It suffices to show that there exists a u,v2-walk W in H−v1. Since H is connected, there

exists a u,v2 walk W ′ in H. If v1 /∈W then set W :=W ′. Otherwise the predecessor of v1 on

Q is a vertex v ∈ N(v1)⊆ P; set W := uW ′vP∗v2. (Here P∗ is P in reverse order.)

Definition 34. A graph is acyclic if it contains no cycle. Acyclic graphs are also called

forests. A connected acyclic graph is called a tree. A leaf is a vertex v with d(v) = 1. We say

that a graph G satisfies (A) if it is acyclic, (C) if it is connected, and (E), if |G|= ‖G‖+1.

Lemma 35. A graph G with ‖G‖ ≥ 1 has at least two leaves if it satisfies (A) or both (C)

and (E).

Proof. First suppose that G is acyclic. Let P = v1 . . .vt be a maximum path in G. Since G

has an edge, v1 6= vt . Since P is maximum and acyclic N(v1) = {v2} and N(vt) = {vt−1}.

So v1 and vt are distinct leaves.

Now suppose that G satisfies (C) and (E). Since G is connected and has an edge,

δ (G)≥ 1. Since G satisfies (E),

∑
v∈V (G)

d(v) = 2‖G‖= 2|G|−2.

So at least two vertices of G have degree 1, i.e., are leaves.

Lemma 36. Suppose G is a graph with a leaf l and G′ = G− l. Then for each of the

conditions (A), (C) and (E), G satisfies it iff G′ satisfies it.

Proof. Suppose G is acyclic. Since removing a vertex cannot create a cycle G′ is acyclic.

Now suppose G′ is acyclic. Since every vertex in a cycle has degree 2, adding a leaf l cannot

create a cycle, and so G is acyclic.
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Suppose G′ is connected. Since l has a neighbor in V (G′), G is connected. Now suppose

G is connected. Since d(l) = 1, there is a maximal path P with an end l. Thus l is not a

cut-vertex, and so G′ is connected.

Since |G|= |G′|+1 and ‖G‖= ‖G′‖+1, G satisfies (E) iff G′ does.

Theorem 37. If a graph G satisfies at least two of the conditions (A), (C), and (E) then it

satisfies all three.

Proof. Argue by induction on |G|.

Base Step: |G|= 1. By inspection, G satisfies all of (A), (C) and (E).

Induction Step: |G| ≥ 2. Since G satisfies (C) or (E), it has an edge. Since G satisfies (A) or

both (C) and (E), it has a leaf l by Lemma 35. Let G′ = G− l. By Lemma 36, G′ satisfies at

least two of the conditions, since G does. By the induction hypothesis G′ satisfies all three

of the conditions. Thus G does also (Lemma 36).

Corollary 38. G is a tree iff there is exactly one path between any two vertices.

Proof. Sufficiency. G is connected, since there is a path between any two of its vertices.

Suppose G has a cycle C, and let ab ∈ E(C). Then ab and a(C−ab)b are distinct a,b-paths,

a contradiction. So G is also acyclic.

Necessity. Suppose G is a tree. Since it is connected, it has a path between any two of

its vertices. We must show this path is unique. Otherwise there exist distinct vertices

x,y and distinct x,y-paths P,Q. Choose x,y so that ‖P‖+‖Q‖ is as small as possible. By

minimality, P and Q have no common internal vertices: if z ∈V (P∩Q) then, since P 6= Q,

either xPz 6= xQz or zPy 6= zQy; thus x,z or z,y is a better choice than x,y. Hence xPyQ∗x is

a cycle, in contradiction to G being acyclic.

Corollary 39. Let G be a tree. Then
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1. Removing an edge disconnects G. So every edge is a cut-edge.

2. Adding an edge to G creates a unique cycle.

3. Every connected graph contains a spanning tree.

Proof. (1) Let e ∈ E(T ) and G′ = G− e. Since

|G′|= |G|= ‖G‖+1 =
∥∥G′
∥∥+2,

G′ is not a tree. Since removing an edge cannot create a cycle, G′ is not connected.

(2) Let e be a new edge joining two vertices of G, and set G′ := G+ e. Since

|G′|= |G|= ‖G‖+1 =
∥∥G′
∥∥ ,

G′ is not a tree. Since adding an edge cannot disconnect G, G′ contains a cycle. Now

suppose G′ contains two distinct cycles C,D and let e′ ∈ E(C)rE(D). Set G∗ := G′− e′.

Since e′ is on the cycle C it is not a cut-edge. So G∗ is connected. Also |G∗|= ‖G∗‖+1.

So G∗ is a tree. But this is a contradiction: G∗ contains the cycle D, since e′ is not on D.

(3) Let G be a connected graph. Let T be a connected spanning subgraph of G with as

few edges as possible. It exists because G is a candidate. Then every edge of T is a cut-edge,

and so no edge of T is on a cycle, i.e., T is acyclic. By the choice of T it is connected,

spanning subgraph of G. So T is a spanning subtree of G.

(3, another proof) Let T be an acyclic spanning subgraph of G with as many edges

as possible. It exists because the empty spanning subgraph is a candidate. By definition

T is spanning and acyclic. It remains to show that it is connected. Since G is connected,

it suffices to show that for any edge uv ∈ E(G−T ) there exists a u,v-path in T . By the

maximality of T , T +uv contains a cycle C. Since T is acyclic, uv ∈C. Thus u(C−uv)v is

a uv-path in T .
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(3, a third proof) Let T be a maximum subtree of G, i.e., a connected acyclic subgraph

with as many vertices as possible. It suffices to show that T is spanning. Otherwise, there

exists v1 ∈V (G−T ). Since G is connected there exists a v1,T -path. Then vt ∈V (T ) and

vt−1 /∈V (t). So T+ = T + vt−1 + vtvt−1 is a graph with a leaf vt−1. By Lemma 36, T+ is a

tree. Since T+ ⊆ H and |T+|> |T |, it contradicts the maximality of T .

(3, a fourth proof) Argue by induction on G. If |G|= 1 then G itself is a tree. So suppose

|G|> 1. Let v be a non-cut-vertex. It exists by Lemma 33.Then G′ := G− v is connected.

By the induction hypothesis it contains a spanning tree T ′. Let e ∈ E(v). It exists because G

is connected and |G| ≥ 2. Then T := T ′+ v+ e is a connected, spanning subgraph of G that

satisfies |T |= ‖T‖, and so T is a spanning tree of G.

Proposition 40. Suppose T and T ′ are spanning trees of a graph G. Then for every

e ∈ E(T )rE(T ′) there exists e′ ∈ E(T ′)rE(T ) such that T − e+ e′ is a spanning tree of

G.

Proof. Let e = ab. Since T ′ is connected, it contains an a,b-path P = (a =)v1 . . .vt(= b).

Let i be the least index such that there is no a,vi path in T −ab. Since ab is the unique ab

path in T , t is a candidate for i, and so i exists. Clearly i 6= 1. Set e′= vi−1vi. Then e′ /∈ E(T ),

and it is a cut-edge of T ∗ := T − e+ e′. Since T is acyclic, and e′, being a cut-edge, is not

contained in a cycle of T ∗, it follows that T ∗ is acyclic. By Theorem 37, T ∗ is a tree, since

|T ∗|= |T |= ‖T‖+1 = ‖T ∗‖+1.

Proposition 41. Suppose T and T ′ are spanning trees of a graph G. Then for every

e ∈ E(T )rE(T ′) there exists e′ ∈ E(T ′)rE(T ) such that T ′+ e− e′ is a spanning tree of

G.
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Proof. By Corollary 39(2), T ′+e contains a unique cycle C. Since T is acyclic, C * T , and

so there exists an edge e′ ∈ E(C−T ). Then T ∗ := T ′+ e− e′ is acyclic, since e′ is an edge

of the unique cycle in T ′+ e. By Theorem 37, T ∗ is a tree, since |T ∗|= |T |= ‖T‖+1 =

‖T ∗‖+1.

Proposition 42. If T is a tree with k edges and G is a nontrivial graph with δ (G)≥ k then

G contains a copy of T , i.e., a subgraph isomorphic to T .

Proof. Argue by induction on k.

Base Step: k = 0. Then T ∼= K1 so T ∼= G[{v}] for any vertex v.

Induction Step: k > 1. Let l be a leaf of T . Then T ′ := T − l is a tree with ‖T ′‖= k−1. By

the induction hypothesis there exists H ′ ⊆ G with H ′ ∼= T ′. Let p be the unique neighbor of

l in T , and let x be the image of p in H ′. Since |H ′|= ‖H ′‖+1 = k and x is not adjacent to

itself, x has at most k−1 neighbors in H ′. Since δ (G)≥ k, there exists y ∈ NG(x)rV (H ′).

Set H = H ′+ y+ xy. Then H ⊆ G and we can extend the isomorphism between T ′ and H ′

to an isomorphism between T and H by mapping l to y.

A.3 Matchings

Definition 43. A matching is a set of edges with no common ends. A maximal matching is

a matching that cannot be enlarged by adding an edge. A maximum matching is matching

with maximum size among all matchings in the graph. A vertex is said to be M-saturated if

and only if it is the end of an edge in M; otherwise it is M-unsaturated, and a set of vertices

X is said to be M-saturated if every x ∈ X is M-saturated. The matching M is perfect if

every vertex is M-saturated
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Definition 44. Given a matching M in a graph G = (V,E), an M-alternating path is a path

P such that each vertex v ∈V (P) is incident to at most one edge in E(P)rM. Such a path

is M-augmenting if its ends are not M-saturated.

Theorem 45 (Berge). A matching M in a graph G = (V,E) is not maximum in G iff G has

an M-augmenting path.

Proof. Suppose P is an M-augmenting path. Then

M′ = M4E(P) =de f (MrE(P))∪ (E(P)rM)

is a larger matching.

Now suppose M is not maximum. Choose a maximum matching M′. Let H be the

spanning subgraph with edge set M4M′. Then MrE(H) = M′rE(H). Since each vertex

is incident to at most one edge of each matching, ∆(H)≤ 2, and the components of H are

alternating paths and even cycles. Since |M|< |M′|,

|M∩E(H)|= |M|− |MrE(H)|< |M′|− |M′rE(H)|= |M′∩E(H)|.

So one component of H has more edges from M′ than M. Such a component must be an

M-augmenting path.

A.3.1 Bipartite matching

A bipartite G with bipartition {X ,Y} is called an X ,Y -bigraph. For S⊆ X set N(S) :=⋃
v∈S N(v). For a function f : A→ B and S ⊆ A, let f (S) := {y ∈ B : ∃x ∈ S( f (x) = y)} be

the range of f restricted to S.

Theorem 46 (Hall’s Theorem [1935]). An X ,Y -bigraph G has a matching that saturates X

iff

|S| ≤ |N(S)| for all S⊆ X . (A.3.1)
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Proof. Suppose M is a matching, and let U be the set of M-unsaturated vertices in X . Set

m = {(x,y) ∈ X ×Y : xy ∈M}. Since the ends of M in X are distinct, m is a function with

domain XrU . Since the ends of m in Y are distinct, m is an injection.

For any S ⊆ X rU , we have m(S)⊆ N(S), and since m is an injection, |S|= |m(S)| ≤

|N(S)|. If M saturates X then U = /0, and so A.3.1 holds.

Now suppose that no matching saturates X , and choose M to be maximum; so U 6= /0. Let

A⊆V (G) be the set of ends of alternating paths starting in U . Set S = A∩X and T = A∩Y .

Then U ⊆ S (witnessed by trivial paths). Consider any alternating path P = v0 . . .vn with

v0 ∈U . If i is even then vi ∈ S, and if also i 6= 0 then vi−1vi ∈M; if i is odd then vi ∈ T .

Since |SrU |< |S|, it suffices to show |N(S)| ≤ |T | ≤ |SrU |, or

(i) N(S)⊆ T and (ii) T ⊆ m(SrU). (A.3.2)

Suppose z ∈ N(S); say wz∈ E(S,z). Then there is an M-alternating path Q = y0 . . .y2k

with y0 ∈U , w = y2k and y2k−1w∈M. Either z∈V (Q) or Qwz is an alternating path starting

in U . Regardless, z ∈ T . So N(S)⊆ T , proving (A.3.2.i).

Suppose z ∈ T . Let P = y0 . . .y2k+1 be an M-alternating path with y0 ∈U , z = y2k+1 and

y2kz /∈M. Since M is maximum, G has no M-augmenting path. So z is M-saturated; say

zx ∈M. Either x ∈V (P) or Pzx is an M-alternating path. Anyway, x ∈ S. Since zx ∈M, we

have x ∈ SrU ; so y ∈ m(SrU). Thus T ⊆ m(SrU), proving (A.3.2.ii).

A graph is k-regular if every vertex has degree k. Recall that the degree of a vertex in a

multigraph is the number (counting multiplicities) of edges incident to it.

Corollary 47. Every k-regular bipartite multigraph G has a perfect matching.

Proof. Suppose G is an k-regular X ,Y -bimultigraph. Then

k|X |= |E(X ,Y )|= k|Y |.
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It follows that |X |= |Y |. Thus it suffices to show that G has a matching that saturates X . By

Hall’s Theorem, it suffices to check A.3.1. Consider any subset S⊆ X . Then

k|S|= |E(S,Y )|=|E(S,N(S))|≤|E(X ,N(S)|=k|N(S)|.

So |S| ≤ |N(S)|.

Definition 48. A vertex cover of a graph G is a subset Q⊆V (G) that contains at least one

end of every edge.

Let C be an odd cycle with ‖C‖= 2k+1. Since C is 2-regular, every m-set Q⊆V (G)

covers at most 2|Q| edges. Thus every vertex cover of C has at least k+1 vertices. On the

other hand, every m-matching in C has 2m ends; so m≤ k.

Theorem 49 (Knig [1931], Egervry [1931] ). If G = (V,E) is bipartite then the maximum

size of a matching equals the minimum size of a vertex cover.

Proof. Let G be a (not necessarily bipartite) graph, and choose an arbitrary orientation
−→
G of

G. We first show that for any matching M and cover W |M| ≤ |W |: Since W is a cover, every

edge of M is incident to some vertex of W (possibly two). Define a function g : M→W

by g(e) ∈ e∩W , and if e⊆W then g(e) is the head of e in
−→
G . Since M is a matching, no

vertex of W can be incident two edges of M. So g is an injection. Thus |M| ≤ |W |.

Now suppose G is an X ,Y -bigraph and M is a maximum matching. Then it has no

M-augmenting paths. Let m,U,S,S,T,T be as in the proof of Hall’s Theorem, and recall

(i) N(S)⊆ T and (ii) T ⊆ m(SrU). (A.3.3)

The set W = S∪T is a vertex cover of G: Suppose uv ∈ E = E(X ,Y ). If v ∈ V rW then

v ∈ S∪T . By (A.3.3.1), if v ∈ S then u ∈ T , and if v ∈ T then u ∈ S.
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It remains to show that |W | ≤ |M|. Since U ⊆ S, every vertex in S is M-saturated. By

(A.3.3.ii), every vertex in T is M-saturated. So (a) every vertex of W is M-saturated. Since

m is an injection, (A.3.3.ii) implies M∩E(S,T ) = /0. So (b) no edge of M has both ends in

W . Using (a) define a function f : W →M by f (w) := e ∈ E(w)∩M (e is unique, by the

definition of matching). By (b) f is an injection. Thus |W | ≤ |M|.

A.3.2 General matching

Notice that if H is a component of a graph G and |H| is odd then G does not have a

perfect matching.

Definition 50. Let CG be the set of components of the graph G. A component with an odd

number of vertices is said to be an odd component. Let OG be the set of odd components of

G and o(G) = |OG|. The graph G is factor critical if G− v has a perfect matching for every

vertex v ∈V (G). A set S is matchable into OG−S if there exists a matching M such that each

edge e ∈M has one end in S and one end in an odd component, and at most one vertex of

each odd component is saturated.

Theorem 51 (Tutte [1947] ). Let G = (V,E) be a graph with a maximum matching M. Then

the number of M-unsaturated vertices of G is equal to

max
S⊆V

o(G−S)−|S|.

Proof. For any set S ⊆ V and matching M, there are at least o(G− S)− |S| unsaturated

vertices, since each odd component H ⊆ G−S has an M-unsaturated vertex, unless M∩

E(S,V (H)) 6= /0, and there are at most |S| such edges in M. So it suffices to show that there

exists a set S⊆V and a matching M with exactly o(G−S)−|S| unsaturated vertices.

Argue by induction on |G|. For the base step |G|= 1, let S = /0. Then o(G−S)−|S|= 1

and the only vertex of G is unsaturated by any matching. Now consider the induction step.
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Choose a set S ⊆ V so that o(G−S)−|S| is maximum, and subject to this, |S| is also

maximum. We will prove the following three claims:

Claim (1). Every component of G−S is odd.

Proof. Suppose H ∈ CG−S with |H| even. Choose a non-cut vertex x (end of a maximal

path) of H, and set S′ = S+ x. Then

OG−S′ = OG−S +(H− x) and |S′|= |S|+1.

Thus o(G−S)−|S|= o(G−S′)−|S′|, contradicting the choice of S, since |S|< |S′|.

Claim (2). Every odd component of G−S is factor critical.

Proof. Consider any H ∈OG−S and any vertex x∈V (H). We must show that H ′=H−x has

a perfect matching. By the induction hypothesis, it suffices to show that o(H ′−T )−|T | ≤ 0

for all T ⊆V (H ′). So consider any such T , and set S′= S∪T +x. Then |S′|= |S|+ |T |+1>

|S|, and so by the choice of S

o(G−S)−|S|> o(G−S′)−|S′|.

Since T + x⊆V (H),

OG−S′ = (OG−S−H)∪OH ′−T .

Since |S|< |S′|, the choice of S implies o(G−S)> o(G−S′). Thus

o(G−S)−|S|> o(G−S′)−|S′|= o(G−S)−1+o(H ′−T )−|S|− |T |−1

2 > o(H ′−T )−|T |.

Moreover, by Claim (1), H is an odd component, and so |H ′| is even. Thus

0≡ |H ′| ≡ o(H ′−T )+ |T | mod 2.

Hence 1 666= o(H ′−T )−|T |, and so 0≥ o(H ′−T )−|T |.
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Claim (3). S is matchable into OG−S.

Proof. Let H be the S,OG−S-bigraph with edge set

F := {xD : x ∈ S,D ∈ OG−S and N(x)∩V (D) 6= /0}.

It suffices to show that H has a matching that saturates S. For this we apply Hall’s Theorem.

Consider any set T ⊆ S. Since | /0| = 0 = |N( /0)|, we may assume that T 6= /0. Thus

|S|> |S′|, where S′ := S−T . By the choice of S

o(G−S)−|S| ≥ o(G−S′)−|S′| ≥ o(G−S)−NH(T )−|S|+ |T |

|N(T )| ≥ |T |.

Finally, we obtain a matching M as follows. By Claim (3) there is a matching M0 that

saturates S and one vertex of |S| odd components. For each H ∈OG−S choose a vertex vH ,

and if possible, choose vH so that it is M0-saturated. Next use Claim (2) to obtain matchings

MH of H− vH for every odd component H ∈ OG−S. Then

M := M0∪
⋃

H∈OG−S

MH

is matching of G. Using Claim (1), it saturates every vertex of G except those o(G−S)−|S|

vertices vH that are not saturated by M0.

A.3.3 Applications of Matching Theorems

A graph is k-regular if every vertex has degree k. A cubic graph is a 3-regular graph. A

k-regular spanning subgraph of a graph G is called a k-factor of G. Thus the edge set of a
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1-factor of G is a perfect matching. A cut-edge is also called a bridge. A bridgeless graph is

a graph without cut-edges. It need not be connected.

Theorem 52 (Petersen [1891] ). Every bridgeless cubic graph G = (V,E) contains a 1-

factor.

Proof. By Tutte’s Theorem, it suffices to show that o(G−S)≤ |S| for every subset S⊆V .

Fix any such S and consider any H ∈ CG−S. Since G is cubic and |H| is odd,

3|H|= ∑
v∈V (H)

d(v) = 2‖H‖+ |E(V (H),S)| ≡ 1 mod 2.

It follows that |E(V (H),S)| is odd, and since G is bridgeless, |E(V (H),S)| ≥ 3. Thus

3o(G−S)≤ |E(S,V rS)| ≤ 3|S|,

and so o(GrS)≤ |S|.

Theorem 53 (Petersen [1891] ). Every regular graph with positive even degree has a

2-factor.

Proof. Suppose G = (V,E) is 2k-regular with k ∈ Z+. It suffices to show that each com-

ponent of G has a 2-factor, so we may assume G is connected. By Euler’s Theorem 27, G

has an Eulerian trail T = v1 . . .vn(= v1). Let D be an orientation of G obtained by directing

each edge e = xy as −→e =−→xy := (x,y) iff there exists i ∈ [n] such that x = vi and y = vi+1.

Let V ′ = {v′ : v ∈V} and V ′′ = {v′′ : v ∈V} be sets of new vertices, disjoint from V and

each other. Let H be the V ′,V ′′-bigraph defined by x′y′′ ∈ E(H) iff −→xy ∈ E(D). Then H is

k-regular. So by the Corollary 47, H has a perfect matching M. Let F = {xy∈ E : x′y′′ ∈M}.

Then (V,F) is a 2-factor of G: for each y ∈V there exists a unique x such that x′y′′ ∈M and

a unique z such that y′z′′ ∈M. Since T is a trail, and xy,yz ∈ T , we have xy 6= yz. (If G were

a multigraph then it could be that x = z, where xy and yz were parallel edges.)
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A.4 Connectivity

Definition 54. A separating set or vertex cut of a graph G is a set S⊆V (G) such that G−S

has more than one component. The connectivity κ(G) is the minimum size of a vertex set S

such that G−S has more than one component or only one vertex. A graph G is k-connected

if k ≤ κ(G).

Note that it is not possible to disconnect a complete graph by removing vertices. The

definition sets the connectivity of a complete graph K equal to |K|−1.

Definition 55. A disconnecting set of edges in a graph G is a set F ⊆ E(G) such that G−F

has more than one component. The edge-connectivity κ ′(G) of G is the minimum size of a

disconnecting set of edges. It is k-edge-connected if k ≤ κ ′(G).

Following the text, we write [S,T ] for E(S,T ). An edge cut in G is a set of edges of the

form [S,S], where /0 6= S 6=V (G) and S denotes V (G)rS.

A.4.1 Basics

Theorem 56 (Whitney [1932] ). Every graph G = (V,E) satisfies

κ(G)≤ κ
′(G)≤ δ (G).

Proof. Choose a vertex v with d(v) = δ (G). Then E(v) is a disconnecting set of edges of

size δ (G), and so κ ′(G)≤ δ (G).

For the first inequality, consider a minimum edge cut [S,S]. Note that κ(G)≤ |G|−1.

First suppose that every vertex in S is adjacent to every vertex in S. So

κ
′(G) = |[S,S]|= |S||S| ≥ |G|−1≥ κ(G).
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Otherwise we can choose x ∈ S and y ∈ S with xy /∈ E. Set

T = (N(x)∩S)∪{w ∈ S− x : N(w)∩S 6= /0}.

Then every edge of [S,S] is incident to a vertex of T , and so every x,y-path contains a vertex

of T . It follows that T is a separating set of G. Set f : [S,S| → T by

f (wz) =

{
z if w = x
w if w 6= x

,

where w ∈ S. Clearly f is onto, and so

κ
′(G) = |[S,S]| ≥ |T | ≥ κ(G).

Theorem 57. Every cubic graph G = (V,E) satisfies κ(G) = κ ′(G).

Proof. Put κ := κ(G) and κ ′ := κ ′(G). If κ = 0 then G is disconnected, and so κ ′ = 0 also.

If κ = 3 then 3 ≤ κ ≤ κ ′ ≤ δ (G) = 3, and again κ = κ ′. So assume κ ∈ [2]. Let S be a

separating set with |S|= κ , and let H1,H2 be two components of G−S. Since S is minimum,

every vertex v ∈ S has a neighbor in each Hi. Since G is cubic, there exists i such that v has a

unique neighbor wv in Hi. Choose such a wv, preferring wv ∈H1, and set F := {vwv : v ∈ S}.

Then |F |= |S|. Moreover F is a disconnecting set of edges: F disconnects H1 from S unless

wv /∈H1 for some v∈ S. In this case v has two neighbors in H1, by the preference for H1, and

so no neighbors in S. Thus F separates H1 + v from H2. So κ ′ ≤ |F |= |S|= κ ≤ κ ′.

Lemma 58 (Expansion Lemma). If G is k-connected and G′ is obtained from G by adding

a new vertex x with at least k neighbors in G then G′ is k-connected.

Proof. Since |G′|= |G|+1, it suffices to show that G′ does not have a (k−1)-separating

set. Consider any (k−1)-set S. Then G−S is connected and x has a neighbor in G−S, so

G′−S is connected.
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A.4.2 Low Connectivity

Definition 59. (This is not the same as the text.) Suppose H is a subgraph of G. Recall

that a path P ⊆ G is an H-path if its ends, but not it internal vertices are in H. Let

P := P0,P1, . . . ,Pt be a sequence of subgraphs of G, and set Gi :=
⋃

j∈[i]Pj. Then P is a

2-witness for G if P0 is a cycle, Pi is a Gi−1-path in G for all i ∈ [t], and every e ∈ E(G) is

an edge of exactly one Pi.

Theorem 60 (Whitney [1932] ). A graph G = (V,E) is 2-connected iff it has a 2-witness

set.

Proof. First suppose G is 2-connected. Then δ (G)≥ 2, and so G contains a cycle C. Let

H ⊆ G be a maximal subgraph such that H has a 2-witness P0, . . . ,Pt . It exists because C is

a candidate. It suffices to show that H = G.

Suppose v0 ∈ V (G−H). Since G is connected, there exists a v0,H-path Q = v0 . . .vs.

Since G is 2-connected, G−vs is connected. So there exists a vs−1,H path P in G−vs. Then

Pt+1 := vsvs−1P is an H-path in H +Pt+1, contradicting the maximality of H. We conclude

that H is a spanning subgraph of G.

Now suppose xy ∈ E(G−H). Then xy is an H-path of H + xy, contradicting the

maximality of H. So H is an induced, spanning subgraph of G. It follows that G = H.

Now suppose G has a 2-witness P0, . . . ,Pt . Argue by induction on t that G is 2-connected.

The base step t = 0 is easy since the cycle P0 is 2-connected. So consider the induction

step t ≥ 1. By the induction hypothesis, H :=
⋃t−1

i=0 Pi is 2-connected. Put Pt := v1 . . .vs.

Consider any x ∈ V (G). We must show that G− x is connected. Since H is 2-connected,

H−x is connected. Also every vertex of Pt−x is connected to a vertex v ∈ {v1,vs} in G−x,

even if x ∈V (Pt). It follows that G is 2-connected.
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Definition 61. Let e = xy be and edge in a graph G, and fix a new vertex ve. The graph G ·e

obtained by contracting e is defined by

G · e := G+K(ve,N({x,y}))− x− y.

Note that if P′ is a path in G · e then either P′ is a path in G or ve ∈V (P′). In the latter

case we can obtain a path in G by replacing ve by one of x,y,xy,yx. If P is a path in G then

either P is a path in G · e or one or both of x,y are in V (P). In the latter case we can obtain a

path P′ in G · e by replacing one of x,y,xPy,yPx by ve.

Lemma 62 (Thomassen [1980] ). Every 3-connected graph G with |G| ≥ 5 has an edge e

such that G · e is 3-connected.

Proof. Suppose not. Consider any edge xy. Since G′ := G · xy is not 3-connected and

|G| ≥ 4, G′ has a separating 2-set S. Observe that vxy ∈ S: Otherwise vxy is in a component

H of G′− S and S ⊆ V (G). Choose w in another component of G′− S. We shall obtain

a contradiction by showing that every w,{x,y}-path P = w . . .u′u in G (with u ∈ {x,y})

contains a vertex of S, implying κ(G)≤ |S|= 2. Fix P; then P′ := wPu′vxy is a w,vxy path

in G′. Since S separates w from vxy in G′, there exists v ∈V (P′)∩S⊆V (P).

So S has the form S = {vxy,z}. Observe that {x,y,z} is a separating 3-set in G: Choose

vertices u,v in distinct components of G′− S. Then u,v ∈ V (G). Consider any u,v-path

P⊆ G. If P contains neither x nor y then P⊆ G′− vxy, and so z ∈V (P).

So far xy ∈ E and the 2 -separating set S are generic. Now choose xy and S = {vxy,z}

as above so that G−{x,y,z} has a component H that is as large as possible among all

possible choices of xy and S. Let H ′ be another component of G−{x,y,z}. Since {x,y,z} is

a minimal separating set, each of x,y,z has a neighbor in each of H,H ′. Let u be a neighbor

of z in H ′. Then G ·uz has a separating set {vuz,v}, and {u,v,z} is a separating set for G.
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Put H+ := G[V (H)+ x+ y]. Then H+ is connected, and u,z /∈ V (H+). Thus H∗ :=

H+− v is disconnected, since otherwise H∗ is a component of G−{u,v,z} with |H∗| =

|H|+ |{x,y}−v| ≥ |H|+1, contradicting the choice of xy,S,H. Let U be a component of H∗

containing neither x nor y (there are at least two components, and since x and y are adjacent,

they are not in different components), and consider a ∈V (U). Since a ∈V (H), it has no

neighbors in G−{x,y,z}−H = G−H+−z. Since a∈U , it has no neighbors in H+−v−U .

Thus N(a)rU ⊆ {v,z}. So {v,z} separates U from H ′, contradicting κ(G)≥ 3.

Definition 63. A sequence of graphs G0, . . . ,Gs is a 3-witness for G iff

1. G0 = K4 and Gs = G; and

2. for each i∈ [s] there is an edge xy∈ E(Gi) such that Gi−1 =G ·xy and dGi(x),dGi(y)≥

3.

Theorem 64. A graph G is 3-connected iff it has a 3-witness.

Proof. First suppose that G is 3-connected. Then |G| ≥ 4. We show by induction on |G| that

G has a 3-witness. Suppose |G|= 4. If xy /∈ E(G) then V (G)r{x,y} is a 2-set that separates

x from y, a contradiction. So G = K4, and G0 = K4 = G is a 3-witness for G. Otherwise,

|G| ≥ 5. By Lemma 62, there exists an edge xy ∈ E(G) such that G · xy is 3-connected.

Since G is 3-connected, d(x),d(y)≥ 3. By induction, G · xy has a 3-witness G0, . . . ,Gs. So

G0, . . . ,Gs,G is a 3-witness for G.

Now suppose G0, . . . ,Gs is a 3-witness for G. We show by induction on s that G is 3-

connected. If s = 0 then K4 = G0 = G is 3-connected. Otherwise, for some edge xy ∈ E(G),

both Gs−1 = G · xy and dG(x),dG(y)≥ 3. Suppose for a contradiction that S is a 2-separator

in G. If S = {x,y} then vxy is a cut vertex of G · xy, a contradiction. So there is a component

83



H of G−S that contains one, say x, of x and y, and another component H ′. Since dG(x)≥ 3

and N(x) ⊆ V (H)∪S, x has a neighbor v in H (maybe v = y). If y /∈ S then S separates v

from H ′ in G · xy; otherwise S′ := S− y+ vxy separates v from H ′ in G · xy. Regardless, we

have a contradiction.

The last paragraph of the above proof is subtle. If dG(x)< 3 then we could have S = N(x),

and V (H) = {x}. Then H−x is not a component of G ·xy−S′ because H−x has no vertices.

Conjecture 65 (Lovasz). There exists a function f : Z+→ Z+ such that for all k ∈ Z+ and

f (k)-connected graphs G and all vertices x,y ∈V (G), there exists a partition {V1,V2} of

V (G) such that G[V1] is an x,y-path and G[V2] is k-connected.

A.4.3 Menger’s Theorem

Definition 66. Let A and B be subsets of vertices in a graph G = (V,E). An A,B-path is

a path whose first vertex is in A, whose last vertex is in B and whose internal vertices are

in neither A nor B. Let l(A,B) be the maximum size of a set of disjoint A,B-paths. An

A,B-separating set (or A,B-separator) is a set of vertices S such that G−S has no A,B-paths.

Let k(A,B) be the minimum cardinality of an A,B-separating set.

Theorem 67 (Menger 1927 ). Let G = (V,E) be a graph, and suppose A,B⊆V . Then the

size l := l(A,B) of a maximum set of disjoint A,B-paths is equal to the size k := k(A,B) of a

minimal A,B-separating set.

Proof. Notice that l ≤ k: If P is a set of disjoint A,B-paths and S is an A,B-separator then

S must contain at least one vertex of each path, and no vertex is on more than one of the
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paths. Thus

f :P → S

P 7→ first x ∈ S∩V (P)

is an injection, and so |P| ≤ |S|. Choosing P maximum and S minimum yields the

inequality.

So it suffices to show k ≤ l. Argue by induction on ‖G‖.

Base Step: ‖G‖= 0. Then every A,B-path is trivial. So A∩B is the maximum set of disjoint

A,B-paths and the minimum A,B-separating set. Thus l = |A∩B|= k.

Induction Step: ‖G‖ ≥ 1. Let e = xy ∈ E(G), and put G′ = G · e. For any U ⊆V , define

U ′ =

{
U−{x,y}+ ve if U ∩{x,y} 6= /0
U otherwise

,

and note that for every T ⊆V (G′) there exists S ⊆V with T = S′. Every A′,B′ path P′ in

G′ is an A,B-path in G, unless ve ∈ V (P′), and in this case we can obtain an A,B path in

G by replacing ve by one of x,y,xy,yx. It follows that every set P ′ of disjoint A′,B′-paths

corresponds to a set P of disjoint A,B-paths with |P|= |P ′| (but not vice versa). So

lG′(A
′,B′)≤ l.

Also, if S is an A,B-separator in G if and only if S′ is an A′,B′-separator in G′. So

kG′(A
′,B′)≤ k ≤ kG′(A

′,B′)+1.

Choose a minimum A′,B′-separator T in G′. If kG′(A′,B′) = k then by the induction

hypothesis applied to G′ we have:

k = kG′(A
′,B′)≤ lG′(A

′,B′)≤ l,
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and we are done. Otherwise, k = kG′(A′,B′)+1. In this case vxy ∈ T , and T = S′, where

S := T − vxy + x+ y. In particular xy ∈ G[S].

Set G′′ = G− e. Since e ∈ G[S],

kG(A,S) = kG′′(A,S) and kG(B,S) = kG′′(B,S) (A.4.1)

Since S separates A from B in G, every A,S-separator in G separates A from B, and so has

size at least |S|, and a similar statement holds for B. So we have

kG(A,S),kG(S,B)≥ k. (A.4.2)

Thus

|S| ≥ lG(A,S)≥ lg′′(A,S) =i.h. kG′′(A,S) =(A.4.1) kG(A,S)≥(A.4.2) k = |S| and

|S| ≥ lG(B,S)≥ lg′′(B,S) =i.h. kG′′(B,S) =(A.4.1) kG(B,S)≥(A.4.2) k = |S|.

Let KA be a collection of |S|= k disjoint A,S-paths and KB be a collection of |S| disjoint

S,B-paths. Then for each z ∈ S there is a unique A,z-path Pz and a unique z,B-path Qz. If

v ∈V (Pw)∩V (Qz) then v ∈ S, since otherwise PvQ is an A,B-walk in G−S, contradicting

the fact that S is an A,B-separator. Thus w = v = z, and so {PzzQz : z ∈ S} is a collection of

|S|= k disjoint A,B-paths.

Definition 68. Let a and b be distinct vertices in a graph G. An a,b-separator is a set

S⊆V (G)−{a,b} such that there are no a,b-paths in G−S. Two a,b-paths are internally

disjoint if they have no internal vertices in common. Let λ (a,b) be the maximum number

of internally disjoint a,b-paths and κ(a,b) be the minimum size of an a,b-separating set (if

it exists).

Corollary 69. If x and y are nonadjacent vertices of a graph G then λ (a,b) = κ(a,b).
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Proof. Let A = N(a) and B = N(b). Then any A,B-path P′ ⊆ G′ = G−{a,b} can be

extended to an a,b-path P = aP′b ⊆ G and any a,b-path Q ⊆ G contains an A,B-path

Q′ = Q−a−b⊆G′. Thus S is an a,b-separator of G iff it is an A,B-separator of G′ and the

maximum number of internally disjoint a,b-paths in G is equal to the maximum number of

disjoint A,B-paths in G′. Applying Menger’s Theorem to G′ we see that the minimum size

of an A,B-separating set is equal to the size of a maximum set of disjoint A,B-paths. The

corollary follows.

Theorem 70. Every graph G = (V,E) satisfies κ(G) = t := mina,b∈V λ (a,b).

Proof. Choose a,b so that t = λ (a,b). First we show that κ(G)≥ t. If G is complete then

λ (a,b) = 1+(|G|−2) = |G|−1 = κ(G),

since ab is an a,b-path, and acb is also an a,b-path for all c ∈V −a−b. Otherwise G has a

separating κ(G)-set S. Let x,y be vertices in distinct components of G−S. Then

t ≤ λ (x,y)≤ |S|= κ(G).

Now we show that t ≥ κ(G). If ab /∈ E then by Corollary 69, there exists an a,b-

separating set S with |S| = t; so κ(G) ≤ t. Otherwise, ab ∈ E; set G′ = G− ab. Then

λG(a,b) = λG′(a,b)+1, since ab is an a,b-path.

We first show that κ(G′)+ 1 ≥ κ(G). Suppose k := κ(G′) < κ(G). Then G′ has a

separating k-set S, and S is not a separating set of G. It follows that G−S has exactly two

components X and Y with (say) a ∈V (X) and b ∈V (Y ). If |X |> 1 then S+a is a separating

of G with size k+1≥ κ(G). A similar argument holds, if |Y |> 1. Otherwise |G|= k+2,

and so κ(G)≤ |G|−1 = k+1.

By Corollary 69, we have

κ(G)≤ κ(G′)+1≤ κG′(a,b)+1 = λG′(a,b)+1 = λG(a,b) = t.
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Definition 71. The line graph H = L(G) of a graph G = (V,E) is defined by

V (H) = E and E(H) = {ee′ : e∩ e′ 6= /0}.

Definition 72. Let x and y be distinct vertices in a graph G. An x,y-edge-cut is a set of

edges F such that there are no x,y-paths in G−F; let κ ′(x,y) be the size of a minimum

x,y-edge-cut. Two x,y-paths are edge-disjoint if they have no common edges; let λ ′(x,y) be

the maximum size of a set of edge-disjoint x,y-paths.

Theorem 73. Let G = (V,E) be a graph with distinct vertices x,y ∈ V. Then κ ′(x,y) =

λ ′(x,y).

Proof. Set G′ = G+ x′+ xx′+ y′+ yy′, where x′ and y′ are new vertices. Then κ ′G(x,y) =

κ ′G′(x,y) and λ ′G(x,y) = λ ′G′(x,y). A set of edges disconnects x from y in G′ iff the corre-

sponding set of vertices separates xx′ from yy′ in L(G′). Moreover, edge disjoint x,y-paths

in G′ correspond to internally disjoint xx′,yy′-paths in L(G′). Thus

κ
′
G(x,y) = κ

′
G′(x,y) = κL(G′)(xx′,yy′) = λL(G′)(xx′,yy′) = λ

′
G′(x,y) = λ

′
G(x,y).

Definition 74. Let G = (V,E) be a graph with v ∈V and U ⊆V . An x,U-fan is a set of |U |

x,U-paths such that any two of paths share only the vertex x.

Theorem 75. A graph G = (V,E) is k-connected if and only if |G| ≥ k+1 and G has an

x,U-fan with |U |= k for all x ∈V and all k-sets U ⊆V − x .

Proof. (Sketch) If G is k-connected then there exist k disjoint N(x),U-paths in G−z. Adding

x yields the desired fan.
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Conversely, the hypothesis implies δ (G)≥ k, and for all x and y, there exist k disjoint

N(x),N(y)-paths. It follows that

κ(G) = min
x 6=y∈V

λ (x,y)≥ k.

Theorem 76. Let G = (V,E) be a k-connected graph with k ≥ 2. Then for any k-set S⊆V

there is a cycle C ⊆ G with S⊆V (C).

Proof. Let C ⊆ G be a cycle containing as many vertices of S as possible. It exists because

δ (G)≥ κ(G)≥ 2. We claim that S⊆V (C). Otherwise, let v∈VrV (C). Then |S∩V (C)|<

k. Arguing by contradiction, it suffices to find a cycle containing S∩V (C)+ v.

Orient C as
−→
C . Let t = min{k, |C|}, and let F be a v,V (C)-fan with |F | = t. Set

F =
⋃

F , and let x1, . . . ,xt be a sequence of the leaves of F in cyclic order around
−→
C , and

set Pi = xi
−→
C xi+1. Then there exists i ∈ [k] such that Pi contains no internal vertices from S:

If t = |C| this is true for all i ∈ [k]; otherwise it follows by the pigeonhole principle, since

t = k > |S∩V (C)|. So D = xi+1
−→
C xiFvFxi+1 is a cycle containing S∩V (C)+ v.

A.5 Graph coloring

Definition 77. Let G = (V,E) be a graph and C be a set (of colors). A proper C-coloring of

G is a function f : V →C such that for all vertices x,y ∈V if xy ∈ E(G) then f (x) 6= f (y). If

k is a positive integer, we say that f is a proper k-coloring if it is a proper [k]-coloring. The

chromatic number χ(G) is the least k such that G has a proper k-coloring. In this case G is

said to be k-chromatic. If G has a k-coloring then it is said to be k-colorable. In this chapter

we will assume that all colorings are proper unless otherwise stated. For i ∈C, f−1(i) is

called a color class.
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Proposition 78. Every graph G satisfies ω(G), |G|
α(G) ≤ χ(G)≤ ∆(G)+1.

A.5.1 Examples

Example 79 (Mycielski [1955]). For every positive integer k there exists a graph Gk with

ω(Gk)≤ 2 and χ(Gk) = k.

Proof. We argue by induction on k. For k≤ 2 let Gk = Kk. Now suppose k≥ 3 and we have

constructed Gk−1 = (Vk−1,Ek−1) as required. We first construct Gk = (Vv,Ek) as follows:

Let V ′k−1 = {v′ : v ∈Vk−1} be a set of new vertices, xk be a new vertex, and put

Vk =Vk−1∪V ′k−1 + xk and,

Ek = Ek−1∪{uv′ : uv ∈ Ek−1}∪{xkv′ : v′ ∈V ′k−1}.

So N(v′)∩Vk−1 = N(v)∩Vk−1 for all v ∈Vk−1.

Suppose ω(Gk) ≥ 3, and choose Q = K3 ⊆ Gk. Then k ≥ 3. Since N(xk) = V ′k−1 is

independent, and δ (Q) = 2, both |V ′k−1∩Q| ≤ 1 and xk /∈Q. Since ω(Gk−1) =i.h. 2, there is

exactly one v′ ∈V ′k−1∩Q. Hence N(v′)∩Q = N(v)∩Q, and so Q− v′+ v is a K3 in Gk−1,

a contradiction.

Notice that χ(Gk)≤ k: If k≤ 2 this is obvious; otherwise Gk−1 has a (k−1)-coloring f ′

by the induction hypothesis. We can extend f ′ to a k-coloring f of Gk by setting f (v′) = k

(k is the new color), and f (xk+1) = 1 (1 is an old color).

Finally we show that χ(Gk)≥ k. If k ≤ 2 this is obvious. For k > 2 it suffices to show

that every (k−1)-coloring g of Gk−xk satisfies g(V ′k−1) = [k−1], since then xk will require

a new color. Suppose not; say α ∈ [k−1]rg(V ′k−1), and assume (wolog) that α = k−1.

Define a (k−2)-coloring h of Gk−1 by:

h(v) =

{
g(v) if g(v) 6= k−1
g(v′) if g(v) = k−1

.
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We claim that h is proper: Suppose uv ∈ Ek−1. Then g(u) 6= g(v) since g is proper. If

g(u) 6= k−1 6= g(v) then

h(u) = g(u) 6= g(v) = h(v).

Otherwise, at most one of u,v is colored with k−1 by g; say g(v) = k−1. Since uv′ ∈ Ek+1,

h(u) = g(u) 6= g(v′) = h(v).

This contradicts the induction hypothesis that χ(Gk−1)≥ k−1.

A.5.2 Brooks’ Theorem

Lemma 80. Let G = (V,E) be a connected graph, and v ∈ V . There exists an ordering

v1, . . . ,v|G| of V such that (*) v = v|G| and for all i ∈ [n− 1] there exists j ∈ [n]r [i] with

viv j ∈ E.

Proof. Argue by induction on n := |G|. If n = 1 the only possible order works; so assume

n > 1. Let P be a maximum path, and choose an end u of P with u 6= v. Since u is not a

cut-vertex, G− u is connected. By induction, there exists an ordering v2, . . . ,vn of V − u

satisfying (*) for G−u. So v1 := u,v2, . . . ,vn satisfies (*) for G.

Define a b-obstruction to be Kb, or, if b = 3, an odd cycle, and let (non-standard)

ω∗(G) be the largest integer b such that G contains a b-obstruction. Then ω∗(G)≤ χ(G)≤

∆(G)+1.

Theorem 81 (Brooks (1941)). Every graph satisfies χ(G)≤max{ω∗(G),∆(G)}.

Proof. Set ∆ := ∆(G), χ := χ(G), ω∗ := ω∗(G), and argue by induction on |G|. Since

χ ≤ ∆+1, it suffices to show that ω∗ = ∆+1 or χ ≤ ∆. If ∆≤ 1 then ω∗ = ∆+1. If ∆ = 2

then 2≤ ω∗ ≤ χ ≤ 3; if ω∗ = 2 then χ ≤ 2 as G has no odd cycle. So assume 3≤ ω∗ ≤ ∆.
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Let S be a maximal independent set, and put G′ := G−S. So ∆(G′) < ∆, since every

vertex of G′ has a neighbor in S. If ω∗(G′)< ∆ then (∆−1)-color G′ by induction, and use a

new color for S. Else, consider a ∆-obstruction Q⊆G′. Choose y ∈ S with ‖y,Q‖ ≥ 1. Then

V (Q)* N(y), since G[Q+ y] 6= K∆+1, and if Q 6= K∆ then ∆ < |Q|. Since Q is connected,

there is wx ∈ EQ(N(y),N(y)); let w′ ∈ NQ(x)−w.

Suppose there is a y,Q-path P := y . . .z in G− x. If yw′ ∈ E, choose P = yw′(= z);

otherwise w′ is a candidate for w. Regardless, we may assume z 6= w. Since Q−w and P−y

are connected, H := G[Q∪P] has an ordering L := w,y,v1, . . . ,vt ,x such that each vi has a

neighbor to its right. Using induction, ∆-color H ′ := G−H by f . Since

dH ′(w)+dH ′(y)≤ 2∆−dH(w)−dH(y)≤ 2∆− (∆−1)−2 < ∆,

some color β is not used on N(w)∪N(y). Extend f to G by setting f (w) = β = f (y) and

coloring the remaining vertices in the order L. This is possible, since each vi has at most

∆−1 colored neighbors when colored, and x has two neighbors w,y with the same color.

If there is no such P then Q−x and y are in distinct components of G−x. Use induction

to ∆-color G− x, so that y and w ∈ Q∩N(x) have the same color, and then color x.

Conjecture 82 (Borodin & Kostochka 1977). If a graph G satisfies 8,ω(G)< ∆(G) then

χ(G)< ∆(G).

A.5.3 Turn’s Theorem

Definition 83. A graph is said to be r-partite if it is r-colorable. Saying r-partite instead

of r-colorable tends to emphasize the partition into r independent sets provided by the

r-coloring. These independent sets are called parts. The complete r-partite Kn1,...nr graph

is the r-partite graph with r parts of sizes n1, . . . ,nr such that any two vertices in different

92



parts are adjacent. The Turn graph Tn,r is the complete r-partite graph on n vertices such

that any two parts differ in size by at most one.

Lemma 84. Among all r-partite graphs on n vertices, Tn,r has the most edges.

Proof. Let G be an r-partite graph on n vertices with as many edges as possible. Suppose G

has two parts X and Y with |X |− |Y | ≥ 2, and x ∈ X . Let G′ be the complete r-partite graph

with the same parts as G except that X is replaced by X−x and Y is replaced by Y +x. Then

E(G′)⊇ E(G)−{xy : y ∈ Y}+{xx′ : x′ ∈ X− x}.

Thus

‖G′‖= ‖G‖− |Y |+ |X |−1≥ ‖G‖+1,

a contradiction. So G = Tn,r.

Theorem 85 (Turn [1941]). Among all graphs G = (V,E) on n vertices with ω(G)≤ r, the

one with the most edges is Tn,r.

Proof. Evidently Tn,r is a candidate. Argue by induction on r that if G satisfies |G| = n,

ω(G)≤ r, and ‖G‖ ≥ ‖Tn,r‖ then G∼= Tn,r. If ω(G)≤ 1 then G∼= Tn,1; so suppose r > 1.

Choose v ∈ V with d(v) = ∆ := ∆(G). Set N := N(v), G′ := G[N], S := V −N(v) and

G′′ := G[S]. Then |G′|= ∆, and ω(G′)≤ r−1, since K + v is a clique in G for every clique

K in G′. Set H := T∆,r−1∨K(S). Then H is an r-partite graph on n vertices, and ω(H)≤ r,
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since any clique in H has at most r−1 vertices in T∆,r−1 and one vertex in S. So

‖G‖= ‖G′‖+‖G′′‖+ |E(N,S)|

= ‖G′‖+ ∑
v∈S

dG(v)−‖G′′‖

≤ ‖T∆,r−1‖+ ∑
v∈S

dG(v)−‖G′′‖ (induction) (A.5.1)

≤ ‖T∆,r−1‖+∆|S| (maximum degree) (A.5.2)

= ‖H‖

≤ ‖Tn,r‖ (Lemma84) (A.5.3)

Inequality (A.5.1) is strict unless G′ ∼= T∆,r−1. Inequality (A.5.2) is strict unless G′′ = K(S)

and G = G′∨G′′. Inequality (A.5.3) is strict unless H ∼= Tn,r. If ‖G‖ ≥ ‖Tn,r‖ then all three

inequalities are tight, and so

G∼= T∆,r−1∨K(S)∼= H ∼= Tn,r.

A.5.4 Edge Coloring

Definition 86. Let G = (V,E) be a graph. A proper k-edge-coloring of G is a function

f : E → [k] such that f (e) = f (e′) implies that e and e′ are not adjacent (e∩ e′ = 0). The

chromatic index χ ′(G) of G is the least k such that G has a proper k-edge-coloring. In this

section we will assume that all edge colorings are proper. Note that this is not the case when

we consider Ramsey Theory.

Theorem 87 (Knig [1916]). Every bipartite graph G satisfies χ ′(G) = ∆(G).

Proof. Argue by induction on ∆ = ∆(G). The base step ∆ = 1 is trivial since G has no

adjacent edges, and so all edges can receive the same color. So consider the induction step
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∆ > 1. First observe that it suffices to find a ∆-regular bipartite multigraph H with G⊆ H:

By Hall’s theorem H has a perfect matching M. Color all edges in M∩E(G) with color

∆, and set G∗ =G−M. Then ∆(G∗) = ∆−1, and so by the induction hypothesis, we can

(∆−1)-edge-color G∗. This yields a ∆-edge-coloring of G.

It remains to construct H. Suppose G has bipartition {A,B} with |A| ≤ |B|. Form G′

by adding new vertices to A, but no new edges, to form a new set A′ with |A′| = |B|. We

will construct H so that it has bipartition {A′,B}. Then we will have ‖H‖= ∆|B|. Argue by

induction on l(G′) = ∆|B|−‖G′‖. If l = 0 we are done. Otherwise

∑
v∈A′

dG′(v) = ‖G′‖= ∑
v∈B

dG′(v) = ∆|B|− l(G′)> 0.

Thus there exist vertices a ∈ A′ and b ∈ B such that dG′(a),dG′(b) < ∆. Set G+ = G′+ e,

where e is a new, possibly parallel edge, joining a and b. Then l(G+)< l(G′), and so we

are done by the induction hypothesis.

Now we consider edge coloring of general graphs. The fundamental result is Theorem 89

due to Vizing. The following lemma does most of the work in its proof.

Lemma 88. Suppose G = (V,E) is a simple graph with ∆(G) ≤ k ∈ N, and v ∈ V . If

χ ′(G− v)≤ k and d(x) = k for at most one x ∈ N(v) then χ ′(G)≤ k.

Proof. Argue by induction on k. If k = 1 then E is a matching, and so χ ′(G) ≤ 1. Now

suppose k > 1. For a function f : E→ [k] and α ∈ [k], set

f (x) := [k]r{ f (e) : e ∈ E(x)} and fα := {x ∈ N(v) : α ∈ f (x)}.

By adding edges and vertices to G, we may assume k−1≤ d(x)≤ k = d(v) for all x ∈ N(v),

and d(y) = k for exactly one y ∈ N(v). So | f (x)| = 2 for all x ∈ N(v)− y and | f (y)| = 1.

Choose a k-edge-coloring f of G′ := G− v maximizing T ( f ) := {β ∈ [k] : 1≤ | fβ | ≤ 2}.
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Suppose | fα | 6= 1 for all α ∈ [k]. Since ∑α∈[k] | fα | = ∑x∈N(v) | f (x)| = 2k− 1, there

exist β ,γ ∈ [k] with | fβ | = 0 and | fγ | ≥ 3; say w ∈ fγ . Set Gβ ,γ = (V − v,Eβ ,γ), where

Eβ ,γ = {e ∈ E : f (e) ∈ {β ,γ}}. Then the component of Gβ ,γ containing w is a path P with

ends w and (say) z, where f (z)∩{β ,γ} 6= /0. Obtain a new k-edge coloring f ′ of G′ by

exchanging colors γ and β on the edges of P. Then f ′(u) = f (u) for u ∈V (G′)r{w,z}, and

f ′(w) = f (w)− γ +β . Thus w ∈ f ′
β
⊆ {w,z}. Hence T ( f )⊆ T ( f ′)+w, a contradiction.

So fα = {z} for some z ∈ N(v) and α ∈ [k]; say α = k. Set M = f−1(k)+ vz. Since

neither z nor v are incident to any edges colored k, M is a matching. Put H := G−M.

Since fk = {z} and vz ∈M, every vertex of N[v] is M-saturated. So dH(x)≤ k−1 for every

x ∈ NH(v), and equality holds at most once. Since f−1(k)⊆M, f is a (k−1)-coloring of

H−v, and ∆(H−v)≤ k−1. So ∆(H)≤ k−1. By induction, χ ′(G)≤ χ ′(H)+1≤i.h. k.

Theorem 89 (Vizing (1964)). Every graph G = (V,E) satisfies χ ′(G)≤ ∆(G)+1.

Proof. Set k := ∆(G)+ 1 and argue by induction on |G|. If |G| = 1 then χ ′(G) ≤ 1 = k.

Otherwise choose v∈V . By induction, χ ′(G−v)≤ k, and so by Lemma 88, χ ′(G)≤ k.

Theorem 90 (Full Vizing (1964)). Every multigraph M satisfies χ ′(M)≤ ∆(M)+µ(M).

Conjecture 91 (Goldberg (1973), Seymour (1979)). Every multigraph M with χ ′(M) ≥

∆(M)+2 satisfies χ ′(M)≥maxH⊆Md ‖H‖b|V |/2ce.

A.5.5 List Coloring

Definition 92. Let G = (V,E) be a graph and C a set of colors. We write 2C for the power

set of C. A list assignment for G is a function f : V → 2C. One should think of f (v)⊆C

as the set of colors that are available for coloring the vertex v. A k-list assignment is a list

assignment f such that | f (v)|= k for all v ∈V . Given a list assignment f , an f -coloring is a
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proper coloring g such that g(v)∈ f (v) for all v∈V . In this case G is f -colorable. The graph

G is k-list-colorable (also k-choosable) if for every k-list assignment f it is f -colorable.

The list-chromatic number (also choosability) χl(G) of G is the least k such that it is k-list

colorable.

Example 93. Let G = Kt,tt . Then χ(G) = 2, but χl(G)≥ t +1.

Proof. Let X ,Y be a bipartition of G with |X |= t. Let f be a t-list assignment for G such

that the vertices of X have disjoint lists of size t, and for each σ ∈∏x∈X f (x) there exists

yσ ∈ Y with f (y) = range(σ). Then for any f -coloring σ of G[X ], the vertex vσ cannot be

colored from the list f (yσ ) = σ .

Definition 94. An edge-list assignment for G is a function f : E → 2C. One should think

of f (e) ⊆ C as the set of colors that are available for coloring the edge e. A k-edge-list

assignment is a list assignment f such that | f (e)| = k for all e ∈ E. Given an edge-list

assignment f , an f -coloring is a proper edge-coloring g such that g(e)∈ f (e) for all e∈E. In

this case, G is f -list-colorable. The graph G is k-edge-list-colorable (also k-edge-choosable)

if for every k-edge-list assignment f , it is f -colorable. The list-chromatic index χ ′l (G) of G

is the least k such that it is k-edge-list colorable.

Conjecture 95. Every graph G satisfies χ ′l (G) = χ ′(G).

Definition 96. A kernel of a digraph D = (V,A) is an independent set S⊆V such that for

every x ∈V rS there exists y ∈ S with xy ∈ A.

Lemma 97 (Bondy & Boppana & Siegel). Let D = (V,A) be a digraph all of whose induced

subgraphs have kernels. If f is a list assignment for D satisfying d+(v) < | f (v)| for all

v ∈V then D has an f -coloring.
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Proof. Argue by induction on |D|. If V = /0 the conclusion is vacuously true. Otherwise, fix

v0 ∈ V . Since | f (v0)| > d+(v0) ≥ 0, there exists α ∈ f (v0). Set W = {v ∈ V : α ∈ f (v)}.

Then v0 ∈W . By hypothesis D[W ] has a (nonempty) kernel S. Color every vertex in S with

α . This is possible because S is independent and α ∈ f (v) for every vertex in S.

Now it suffices to f -color D′ = D−S so that no vertex in D−S is colored α . For this

purpose, let f ′ be the list assignment for D′ defined by f ′(v) = f (v)−α . Since |D′|< |D|,

using induction, it suffices to show that | f ′(v)|> d+
D′(v) for all v ∈V rS.

If v /∈W then α /∈ f (v), and so

| f ′(v)|= | f (v)|> d+
D (v)≥ d+

D′(v).

Else v ∈W . Since S is a kernel of D[W ], there exists w ∈ S =V rV (D′) with vw ∈ A. So

| f ′(v)|= | f (v)−α|> d+
D (v)−1≥ d+

D′(v).

Theorem 98 (Galvin (1995)). Every X ,Y -bigraph G satisfies χ ′l (G) = χ ′(G) = ∆(G).

Proof. Let ∆ :=∆(G) and set H := L(G). Then χ ′l (G)= χl(H) and χ ′(G)=∆ (Theorem 87).

Fix a ∆-edge coloring c : E(G)→ [∆].

Let L be an ∆-edge-list assignment for G; so L is a ∆-list assignment for H. Our plan is

to apply Lemma97 to H to show that it has an L-coloring f ; then f is an L-edge-coloring of

G. So it suffices to show H has an orientation D := (E(G),A) such that (i) ∆+(D)≤ ∆−1

and (ii) every induced subgraph of D has a kernel.

Each ee′ ∈ E(H) satisfies e∩ e′ ⊆ X or ee′ ⊆ Y , but not both. Define D by putting

ee′ ∈ A iff (e∩ e′ ∈ X ∧ c(e)> c(e′))∨ (e∩ e′ ∈ Y ∧ c(e)< c(e′)).
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Each e ∈ E(G) =V (H) satisfies d+
H (e)≤ ∆−1, since it has at most c(e)−1 out-neighbors

e′ with e∩ e′ ∈ X and ∆− c(e) out-neighbors e′ with e∩ e′ ∈ Y . So (i) holds for D.

For (ii), consider any induced subgraph D′ := D[F ], where F ⊆ E(G) =V (D). Argue

by induction on |D′| ≥ 1. Let X ′ := {x ∈ X : EG(x)∩F 6= /0}. For each x ∈ X ′, choose

ex ∈ EG(x)∩ F with c(ex) minimum. Then eex ∈ A for every e ∈ EG(x)∩ F − ex. If

Q = {ex : x ∈ X ′} is independent then it is a kernel of D′; else fix distinct x,x′ ∈ X ′ such that

ex∩ ex′ 6= /0. So ex,ex′ ∈ EG(y) for some y ∈ Y ; say c(ex) < c(ex′). Let D′′ = D′− ex. By

induction, D′′ has a kernel S. If ex′ ∈ S then S is a kernel for D′, since exex′ ∈ A. Otherwise,

ex′e∗ ∈ A for some e∗ ∈ S. The choice of ex′ implies ex′ ∩ e∗ /∈ X . So ex′ ∩ e∗ ∈ Y , and thus

e,e′,e∗ ∈ EG(y). So c(e∗)> c(ex′), and also c(ex′)> c(ex). Thus exe∗ ∈ A, since ex ∈ EG(y).

Hence S is a kernel for D′.

A.6 Planar graphs

We have been informally drawing graphs in the Euclidean plane R2 since the start of the

semester. Now we formalize the definition of a drawing of a graph in R2.

A.6.1 Very Basic Topology of the Euclidean Plane

Let p,q ∈ R2. The p,q-line segment Lp,q is the subset of R2 defined by L(p,q) := {p+

λ (q− p) : 0≤ λ ≤ 1} and L̊(p,q) := L(p,q)r{p,q}. For distinct points p0, . . . , pk ∈R2, the

union A(p0, . . . , pk) :=
⋃

i∈[k]L(pi−1, pi) is a (polygonal) p0, pk-arc provided L(pi−1, pi)∩

L̊(p j−1, p j) = /0 for all distinct i, j ∈ [k]. We say that p0 and pk are linked by A(p0, . . . , pk). If

A(p0, . . . , pk) is an arc and L(p0, . . . , pk)∩L̊(pk, p0)= /0 then P(p0, . . . , pk, p0) :=L(p0, . . . , pk)∪

L(pk, p0) is a polygon. Note that arcs and polygons are closed in R2.

For x ∈R2 the open ball around x with radius r is the set Br(x) := {y ∈R2 : ‖x,y‖< r}.

A set U ⊆ R2 is open if for all points p ∈U there exists r > 0 such that Br(x) ⊆ R2. In
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particular, R2 and /0 are open. The complement of an open set is a closed set. The frontier

of a set X is the set of all points y ∈ R2 such that Br(x)∩X 6= /0 and Br(x)rX 6= /0 for all

r > 0. Note that if X is open, then its frontier lies in R2rX .

Let U be an open set. Two points x,y ∈U are linked in U if there exists an x,y-arc

contained in U . The relation of being linked is an equivalence relation on U . Its equivalence

classes are called regions. Regions are open: Suppose R⊆U is a region and x ∈ R. Then

there exists a r > 0 such that Br(x)⊆U . Clearly every y ∈ Br(x) is linked to x in U , since

L(x,y)⊆ Br(x). So Br(x)⊆ R. A closed set X separates a region R if RrX has more than

one region.

Suppose X is a finite union of points and arcs. Then U := R2rX is open. Let R be a

region of U , and F be the frontier of R.

Theorem 99 (Jordan Curve Theorem for Polygons). For every polygon P ⊆ R2, the set

R2rP has exactly two regions. Each of these regions has the entire polygon as its frontier.

A.6.2 Graph Drawings

Let G = (V,E) be a graph. A drawing of G is a graph G̃ := (Ṽ , Ẽ) such that Ṽ ⊆ R2,

each edge e ∈ Ẽ is an arc between its ends, and G̃∼= G. So edges are no longer just pairs of

vertices, but have their own identity and structure (we need this anyway to formally deal

with different edges linking the same two vertices). It should be clear that every finite graph

has a drawing. Moreover, by moving vertices slightly and readjusting edges, we can (and

do) require the following additional properties for drawings, without restricting the set of

graphs that can be drawn.

1. No three edges have a common internal point.

2. The only vertices contained in an edge are its endpoints.
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3. No two edges are tangent.

4. No two edges have more than one common internal point.

A plane graph is a drawing of a graph that has no crossing, i.e., two edges that have a

common internal vertex. A planar graph is a graph that has a plane drawing.

Let G̃ := (Ṽ , Ẽ) be a plane graph. The faces of G̃ are the regions of R2r (Ṽ ∪
⋃

Ẽ). The

frontier of a face is called its boundary. Note that a plane cycle is a polygon. By the Jordan

Curve Theorem we have:

Proposition 100. A plane cycle is the boundary of exactly two faces.

A.6.3 Basic facts

Fact 101 (). Let G be a planar multigraph. Removing a non-cut-edge reduces the number

of faces by 1. Contracting a non-loop does not change the number of faces.

Fact 102 (). Let G be a planar multigraph. Every non-cut-edge appears exactly once on the

bounding walk of exactly two faces. Every cut-edge appears exactly twice on the bounding

walk of exactly one face. In particular,

∑
f∈F(G)

l( f ) = 2‖G‖ .

Theorem 103 (6.1.21 Euler’s Formula (1758)). Let G be a connected planar multigraph.

Then

|G|−‖G‖+ |F(G)|= 2.

Proof. Argue by induction on |G|.

Base Step: |G|= 1. In this case all edges of G are loops. Argue by secondary induction on

‖G‖. For the base step ‖G‖= 0, note that G has one vertex and one face, and so

|G|−‖G‖+ |F(G)|= 1−0+1 = 2.
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For the induction step, set G′ = G− l for some loop l. Then using Fact 101:

|G|−‖G‖+ |F(G)|= |G′|− (
∥∥G′
∥∥+1)+(|F(G′)|+1) =i.h. 2.

Induction Step: |G| > 1. Since G is connected, G has a non-loop edge e. Set G′ = G · e.

Then

|G|−‖G‖+ |F(G)|= (|G′|+1)− (
∥∥G′
∥∥+1)+ |F(G′)|= 2.

Lemma 104 (). Let G̃ be a drawing of a 2-connected planar graph G. Then the boundary

walk of every face is a cycle.

Proof. By Theorem 60, G has an an ear decomposition P0, . . . ,Ph. Argue by induction on h.

For the base step h = 1, note that P0 is a cycle that bounds the only two faces of G̃ (Jordan

Curve Theorem). Now consider the induction step. Let Ph have ends x,y, and note that P̊h is

contained in some face f of H̃ = G̃−(Ph−x−y). By the induction hypothesis, every face of

H̃ is bounded by a cycle. Let C = xv1 . . .vayva+2 . . .vbx be the cycle that bounds f . Observe

that F(H̃)− f ⊆ F(G̃). Using Euler’s formula,

|F(G̃)| = 2−|G̃|+
∥∥∥G̃
∥∥∥= 2− (|H̃|+ |Ph|−2)+(

∥∥∥H̃
∥∥∥+‖Ph‖)

= (2−|H̃|+
∥∥∥H̃
∥∥∥)− (|Ph|−‖Ph‖)+2

= |F(H̃)|−1.

So P̊h divides f r P̊h into exactly two new faces. By the Jordan Curve Theorem, one must

be bounded by the cycle xyva+2 . . .vbx and the other by the cycle xv1 . . .vayx.

Theorem 105. If G is a simple planar graph with at least three vertices then ‖G‖≤ 3|G|−6.

Moreover, if G has girth greater than 3 then ‖G‖ ≤ 2|G|−4.
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Proof. We may assume that G is a maximal planar graph, i.e., it is not a spanning subgraph

of any planar graph with more edges. Then G is connected, since otherwise we could add

an edge between two components of G while maintaining planarity. Since G is connected

and has at least three vertices, ‖G‖ ≥ 2; since it is simple it has no parallel edges. Thus the

length of every face is at least 3. By Fact 102,

2‖G‖= ∑
f∈F(G)

l( f )≥ 3|F(G)|.

So |F(G)| ≤ 2
3 ‖G‖. By Theorem 103

2 = |G|−‖G‖+ |F(G)| ≥ |G|− 1
3
‖G‖ ,

and so 3|G|−6≥ ‖G‖.

Now suppose that the girth of G is greater than 3. Then every face boundary has length

at least 4. So

2‖G‖= ∑
f∈F(G)

l( f )≥ 4|F(G)|.

Thus |F(G)| ≤ 1
2 ‖G‖. By Theorem 103

2 = |G|−‖G‖+ |F(G)| ≥ |G|− 1
2
‖G‖ ,

and so 2|G|−4≥ ‖G‖.

Corollary 106. Neither K5 nor K3,3 is planar.

Proof. If K5 is planar then Theorem 105 yields the following contradiction:

10 = ‖K5‖ ≤ 3|K5|−6 = 9.

If K3,3 is planar, then since it is bipartite, and so has girth greater than 3, Theorem 105 yields

the contradiction:

9 =
∥∥K3,3

∥∥≤ 2|K3,3|−4 = 8.
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Theorem 107 (Kuratowski (1930)). A graph is planar iff it contains neither a subdivision

of K5 nor a subdivision of K3,3.

We will break the proof of Kuratowski’s Theorem into smaller pieces. First we need

some preparation. Call a subdivision of K5 or K3,3 a K-graph (for Kuratowski).

Lemma 108 (). Let e = xy be an edge of a graph G. If G contains no K-graph then G · e

contains no K-graph.

Proof. We prove the contrapositive. So suppose G · e contains a K-graph Q. Then Q⊆ G

unless ve ∈V (Q). So suppose ve ∈V (Q). Note that NQ(ve)⊆ NG(x)∪NG(y). First suppose

that there exists z ∈ {x,y} such that |NQ(ve)rNG(z)| ≤ 1. (This is the case if d(ve)≤ 3.)

Say z= x. Then replacing ve by x or x,y,xy yields a subdivision of the K-graph Q. Otherwise,

dQ(ve) = 4 and and |NQ(ve)rNG(z)|= 2 for both z ∈ {x,y}. In this case Q is a subdivision

of K5. We show that G contains a subdivision of K3,3! Let Q′ = Q− ve + x + y+ xy,

where x and y are new branch vertices, and (say) a,b,c,d are the remaining old branch

vertices. Then Q′ contains a subdivision K3,3, where the branch vertices have the bipartition

{{x,a,b},{y,c,d}}.

Corollary 109 (). If G is planar then G does not contain a K-graph.

Proof. Suppose Q⊆ G is a K-graph. We show by induction on the number h of subdivision

(degree 2) vertices in Q that G is not planar. The base step h = 0 is Corollary 106. For

the induction step h > 0, consider a subdivision vertex x and one of its two neighbors y.

Contracting xy yields a K-graph with one less subdivision vertex. Thus by the induction

hypothesis G · xy is nonplanar, and so G is also nonplanar.
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Lemma 110 (). Let G̃ be a drawing of G with a face f . Then G can be redrawn as H̃ so

that the boundary of f is the boundary of the outer face in G̃.

Proof. Transfer G̃ to a sphere, and then poke a hole in f. Stretching the resulting surface to

the plane yields the desired drawing H̃.

Let G = (V,E) be a graph, and S⊆V . An S-lobe is a subgraph of the form G[S∪V (H)],

where H is a component of G−S.

Lemma 111 (). If G is nonplanar, but every proper subgraph of G is planar, then G is

2-connected.

Proof. Certainly G is connected since we can draw an edge between the outer faces of

any two components of G. Otherwise G has a cut-vertex v. Let H be a {v}-lobe of G and

H ′ = G− (H−v). Then by the minimality of G, H and H ′ are planar. Clearly we can attach

a drawing H̃ of H with v on the outer face boundary to a face of a drawing H̃ ′ of H ′ whose

boundary contains v. This violates the hypothesis that G is nonplanar.

Lemma 112 (Contrapositive, lobes). Let G be a graph with subgraph S = K2 ⊆ G . If G is

nonplanar then there exists a nonplanar S-lobe of G.

Proof. Argue by induction on the number h of components of G−S. The base step h = 1 is

trivial; so consider the the induction step. Let H be an S-lobe, and G′ = G− (H−S). If H

is nonplanar then we are done, and if G′ is nonplanar we are done by induction. Otherwise

let H̃ be a drawing of H with S on the boundary of the outer face and G̃′ be a drawing of G′.

We can draw G by deforming H̃ to fit in a face of G̃′ containing S, a contradiction.

Lemma 113. If G is nonplanar and contains no K-graph (i.e., it is a counter example to

Kuratowski’s Theorem) and among such graphs ‖G‖ is minimum then G is 3-connected.
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Proof. Suppose G is a minimum counterexample. Then G does not contain a K-graph and

G is not planar. Thus no subgraph of G contains a K-subgraph. Since G is minimum, every

proper subgraph of G is planar. So by Lemma 111, G is 2-connected.

Suppose for a contradiction G has a separating 2-set S = {x,y}; then it is a minimum

separating set. Of course, G+ := G+ xy is nonplanar. By Lemma 112, there exists a

nonplanar S-lobe H+ of G+. Since S is a minimal separating 2-set, it has at least two

neighbors in G−H. Thus ‖H+‖ ≤ ‖G+‖−2 < ‖G‖. So H+ is not a counterexample. It

follows that H+ must contain a K-graph Q. All of Q appears in H := G[V (H+)] except xy.

Let H ′ 6= H be a component of G−S. Then H ′ contains an x,y-path P. So Q− xy+P is a

K-graph contained in G, a contradiction.

Theorem 114. If G is a 3-connected graph that does not contain any K-graph then G is

planar.

Proof. We argue by induction on |G|. If |G| ≤ 4 then G is planar, since G ⊆ K4, and K4

is planar. So suppose |G| ≥ 5. By Theorem 62, G has an edge e = xy such that H = G · e

is 3-connected. By Corollary 108, H does not contain a K-graph. Thus by the induction

hypothesis, H is planar. Let H̃ be a drawing of H.

Let H ′ = H−ve, and let f be the face of H̃−ve that contains ve. Since H ′ is 2-connected,

Lemma 104 implies that f is bounded by a cycle C, say with orientation
−→
C , and (NG(x)∪

NG(y))r {x,y} = NH(ve) ⊆ V (C). Choose the notation so that dG(x) ≤ dG(y). Obtain a

drawing G̃′ of G′ = G− y from H̃ ′ by drawing x at the point corresponding to ve in H̃ and

deleting the edges vez with z ∈ NG(y)rNG(x). Our goal is to extend G̃′ to a drawing G̃ of

G by adding y and the edges in E(y) to G̃′.

Let x1, . . . ,xk be the neighbors of x in G′ arranged in cyclic order around
−→
C , and

U := NG(y)− x. If there exists an index i such that U ⊆ Ci := V (xi
−→
C xi+1) then we can
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extend G̃′ to G̃ by drawing y in the face f ′ of G̃′ bounded by xxiCxi+1x, and then drawing

edges from y to each vertex of U + x. This is possible, because all vertices of U + x appear

on the boundary of f ′. Otherwise for every index i there exists ui ∈U such that ui /∈Ci.

If there exists an index i and a vertex vi ∈ N(y)∩V (Ci− xi− xi+1) then the vertices

vi,ui,x,xi,xi+1,y

are the branch vertices of a subdivision of K3,3 with bipartition {{vi,ui,x},{xi,xi+1,y}},

where the edges of the cycle xivixi+1uixi are represented by the paths

xi
−→
C vi,vi

−→
C xi+1,xi+1

−→
C ui,ui

−→
C xi.

(Draw the picture.) This is a contradiction.

Otherwise, U ⊆ NG(x). Since dG(x) ≤ dG(y), we have U = NG(x)− y. Thus S :=

NG(x)− y separates xy from the rest of G. Since |G| ≥ 5 and G is 3-connected, |S| ≥ 3. Say

a,b,c ∈ S. Then x,y,a,b,c are the branch vertices of a subdivision of a K5, where the edges

of the cycle a,b,c,a are represented by the paths a
−→
C b,b

−→
C c,c

−→
C a. (Draw the picture.) This

is a contradiction.

Proof of Kuratowski’s Theorem 114. First suppose G contains a K-graph. Then by Lemma

109, G is not planar. Now suppose, for a contradiction, that some nonplanar graph does

not contain a K-subgraph. Let G be such a graph with the minimum number of edges. By

Lemma 113, G is 3-connected. But then by Theorem 114, G is planar, a contradiction.

Theorem 115 (Thomassen (1994)). Every simple planar graph G is 5-list colorable.

Proof. It suffices to prove the following more technical statement by induction on G.

Claim. Suppose G̃ is a drawing of a simple planar graph G such that every interior face, has

length three, the boundary of the outer face is a cycle C, and xy ∈ E is an edge of C. If L is a

list assignment for G such that
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1. L(x) = {α}, L(y) = {β}, and α 6= β ,

2. |L(v)| ≥ 3 for all vertices v on the outer boundary, except x and y, and

3. |L(v)| ≥ 5 for all vertices not on the outer boundary,

then G has an L-coloring.

To see that the claim implies the theorem note that adding edges and vertices to G, and

deleting colors from some lists of a list assignment L does not make it easier to L-color G.

Moreover, we can add edges to a planar graph G so that every face is bounded by a C3, and

G remains planar. So it suffices to prove the claim.

Proof of Claim. Argue by induction on |G|. Note that |G| ≥ |C| ≥ 3. First consider the base

step |G|= 3. Color x with α and y with β . The last vertex z has at least three colors in its

list, and so we can color it with a color distinct from α and β .

Now consider the induction step |G| > 3. The outer face of G̃ is bounded by a cycle

C = v1v2 . . .vsv1 with v1 = x and v2 = y.

Case 1. C has a chord viv j with i > j. Let C1 = vivi+1 . . .v jvi and C2 = v jv j+1 . . .viv j be the

two nonspanning cycles contained in C+ viv j. Let G̃i be the plane graph formed by Ci and

its interior. Then G̃1∪ G̃2 = G, G̃1∩ G̃2 = G̃[{viv j}], and x,y ∈ V (C1). By the induction

hypothesis, there exists an L-coloring f1 of G̃1. Set x′ = vi, α ′ = f (x′), y′ = v j, β ′ = f (y′),

L′(x′) = {α ′}, L′(y′) = β ′ and L′(v) = L(v) for all vertices of G̃− x′− y′. Then by the

induction hypothesis there exists an L′-coloring g2 of G̃2. It follows that f = g1∪g2 is an

L-coloring of G.

Case 2. C does not have a chord. Since every interior face is bounded by a C3, G[N(vs)]

contains a hamiltonian x,vs−1-path P. Moreover, since C has no chords, the outer face of
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G̃′ = G̃− vs is bounded by the cycle C′ = xPvs−1C∗v1(= x). Of course, the interior faces

of G̃′ have length three. Let γ,δ ∈ L(vs) be distinct colors not equal to α . Define a list

assignment L′ for L by

L′(v) =

{
L(v)− γ−δ if v ∈V (P)− x− vs−1

L(v) else
.

By the induction hypothesis G̃′ has an L′ coloring f ′. Choose ε ∈ {γ,δ} such that ε 6=

f ′(vs−1). Then f ′ can be extended to an L-coloring f of G by setting f (vs) = ε.

This completes the proof of the claim and the Theorem.

A.7 Extras

A.7.1 Lower Bounds on Ramsey’s Theorem

Proof. Fix k≥ 2, and set n = b2k/2−1/2c. Let V be a set of n vertices, and G be the set of all

graphs G with V (G) =V . So G = (V,E) ∈ G if and only iff E ⊆
(V

2

)
. Since there are 2(

n
2)

choices for E,

|G |= N := 2(
n
2). (A.7.1)

For X ⊆V with |X |= k, let GX be the set of graphs in G such that X is a clique or co-

clique. So if G := (V,E) ∈ G then G ∈ GX iff E ∩
(X

2

)
∈ { /0,

(X
2

)
} and Er

(X
2

)
⊆
(V

2

)
r
(X

2

)
.

There are two possibilities for the first conjunct and 2(
n
2)−(

k
2) possibilities for the second.

Thus

|GX |= 2 ·2(
n
2)−(

k
2) = 2N2−(k

2−k)/2. (A.7.2)

Any graph G in

G r
⋃

X∈(V
k)

GX 6= /0,
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satisfies ω(G),α(G)< k and |G|= n. So it suffices to prove |
⋃

X∈(V
k)

GX |< |G |.

Since (a) |
⋃

X∈(V
k)

GX | ≤
(n

k

)
|GX |, (b)

(n
k

)
< nk

k! , and (c) n
2k/2−1/2 ≤ 1,

|G |− |
⋃

X∈(V
k)

GX | ≥ N−
(

n
k

)
·2N2−(k

2−k)/2 ((a), (A.7.1), (A.7.2))

> N(1− 2
k!

nk2−(k−1)k/2) (b)

≥ N(1− (
n

2k/2−1/2 )
k)≥ 0, (c)

and we are done.

A.7.2 Equitable Coloring

Definition 116. An equitable k-coloring of a graph G = (V,E) is a proper coloring f : V →

[k] such that difference || f−1(i)|− | f−1( j)|| in the sizes of the the i-th and j-th color classes

is at most 1 for all i, j ∈ [k]. In particular, every color is used if |G| ≤ k.

Theorem 117 (Hajnal & Szemerédi Theorem (1976)). Every graph G with maximum degree

at most r has an equitable (r+1)-coloring.

The proof was long and sophisticated, and does not provide a polynomial time algorithm.

Kierstead and Kostochka found a much simpler and shorter proof. This better understanding

has led to many new results, several of which are stated below.

Let θ(G) = max{d(x) = d(y) : xy ∈ E(G)}.

Theorem 118 (Kiestead & Kostochka (2008)). For every r ≥ 3, each graph G with θ(G)≤

2r+1 has an equitable (r+1)-coloring.

Theorem 119 (Kierstead, Kostochka, Mydlarz & Szemerédi). There is an algorithm that

constructs an equitable k-coloring of any graph G with ∆(G)+1≤ k, using time O(r|G|2).
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Problem 120. Find a polynomial time algorithm for constructing the coloring in Theo-

rem (118).

One might hope to prove an equitable version of Brooks’ Theorem, but the following

example shows that the statement would require special care: For r is odd, Kr,r satisfies

∆(Kr,r) = r and ω(G) = 2, but has no r-equitable coloring. Chen, Lih and Wu [?] proposed

the following common strengthening of Theorem 117 and Brooks’ Theorem.

Conjecture 121. Let G be a connected graph with ∆(G) ≤ r. Then G has no equitable

r-coloring if and only if either (a) G = Kr+1, or (b) r = 2 and G is an odd cycle, or (c) r is

odd and G = Kr,r.

Kierstead and Kostochka have proved the conjecture for r ≤ 4, and also for r ≥ 1
4 |G|.

Proof of Theorem 117. Let G be a graph with ∆(G) ≤ r. We may assume that |G| is

divisible by r+1: If |G|= s(r+1)− p, where p ∈ [r] then set G′ := G+Kp. Then |G′| is

divisible by r+1 and ∆(G′)≤ r. Moreover, the restriction of any equitable (r+1)-coloring

of G′ to G is an equitable (r+1)-coloring of G. So we may assume |G|= (r+1)s.

We argue by induction on ‖G‖. The base step ‖G‖= 0 is trivial, so consider the induction

step. Let u be a non-isolated vertex. By the induction hypothesis, there exists an equitable

(r+1)-coloring of G−E(u). We are done unless some color class V contains an edge uv.

Since ∆(G)≤ r, some color class W contains no neighbors of u. Moving u to W yields an

(r+1)-coloring of G with all classes of size s, except for one small class V− :=V −u of

size s−1 and one large class V+ :=W +u of size s+1. Such a coloring is called nearly

equitable.

Given a nearly equitable (r+1)-coloring, define an auxiliary digraph H , whose vertices

are the color classes, so that UW is a directed edge if and only if some vertex y ∈U has
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no neighbors in W . In this case we say that y witnesses UW . Let A be the set of classes

from which V− can be reached in H , B be the set of classes not in A and B′ be the set

of classes reachable from V+ in H [B]. Set a := |A |, b := |B|, b′ := |B′|, A :=
⋃

A ,

B :=
⋃

B and B′ :=
⋃

B′. Then r+1 = a+b. Since every vertex y ∈ B has a neighbor in

every class of A and every vertex z ∈ B′ also has a neighbor in every class of B−B′,

dA(y)≥ a for all y ∈ B and dA∪B\B′(z)≥ a+b−b′ for all z ∈ B′. (*)

Case 0: V+ ∈A . Then there exists a V+,V−-path P =V1, . . . ,Vk in H . Moving each

witness y j of VjVj+1 to Vj+1 yields an equitable (r+1)-coloring of G. �

We now argue by a secondary induction on b, whose base step b = 0 holds by Case 0.

Also |A|= as−1 and |B|= bs+1. Now consider the secondary induction step.

A class W ∈A is terminal, if every U ∈A −W can reach V− in H −W . Let A ′ be

the set of terminal classes, a′ := |A ′| and A′ :=
⋃

A ′. An edge wz is solo if w ∈W ∈A ′,

z ∈ B and NW (z) = {w}. Ends of solo edges are solo vertices and solo neighbors of each

other.

Order A as V−,X1, . . . ,Xa−1 so that each Xi has a previous out-neighbor.

Case 1: For some a− b ≤ i ≤ a− 1, class Xi is not terminal. Then some X j ∈ A ′

cannot reach V− in H −Xi. So j > i and X j has no out-neighbors before Xi. In particular,

d+
A (X j)< b. Then for each w ∈ X j, dA(w)≥ a−b, and so dB(w)< 2b. Let S be the set of

solo vertices in X j, and D := X j \S. If v ∈ B−NB(S) then v has no solo neighbor in X j, and

so has at least two neighbors in D. Thus 2b |D| > 2 |B−NB(S)|. Using |S|+ |D| = s and

r |S| ≥ |E(S,A)|+ |NB(S)|,

bs+(a−1) |S|= b |D|+ r |S|> |B−NB(S)|+ |E(S,A)|+ |NB(S)|> bs+ |E(S,A)| .
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Thus (a−1) |S|> |E(S,A)|, and so there exists w ∈ S with dA(w)≤ a−2. Thus w witnesses

some edge X jX ∈ E(H [A]). Since w ∈ S, it has a solo neighbor y ∈ B.

Move w to X and y to X j. This yields nearly equitable colorings of G[A+y] and G[B−y].

Since X j is terminal, X +w can still reach V−. Thus by Case 0, G[A+ y] has an equitable

a-coloring. By (*), ∆(G[B− y])≤ b−1. So by the primary induction hypothesis G[B− y]

has an equitable b-coloring. After combining these equitable colorings we are done.

Case 2: All the last b classes Xa−b, . . . ,Xa−1 are terminal. Then a′ ≥ b. For y ∈ B′, let

σ(y) be the number of solo neighbors of y. Similarly to (*),

r ≥ d(y)≥ a+b−b′+dB′(y)+a′−σ(y)≥ r+1+dB′(y)+a′−b′−σ(y).

So σ(y)≥ a′−b′+dB′(y)+1. Let I be a maximal independent set with V+ ⊆ I ⊆ B′. Then

∑y∈I(dB′(y)+1)≥ |B′|= b′s+1. Since a′ ≥ b,

∑
y∈I

σ(y)≥∑
y∈I

(a′−b′+dB′(y)+1)≥ s(a′−b′)+b′s+1 > a′s =
∣∣A′∣∣ .

So some vertex w ∈W ∈A ′ has two solo neighbors y1 and y2 in the independent set I.

Since the class Y of y1 is reachable from V+, we can equitably b-color G[B− y1]. Let

Y ′ be the new class of y2. If w witnesses an edge WX of G[A] then we are done by Case 1;

otherwise we can move w to some class U ⊆ B′− y1. Replacing w with y1 in W to get W ∗

and moving w to U yields a new nearly equitable (r+1)-coloring of G. If U ∈A then we

are done by Case 0; otherwise at least a+1 classes, W ∗,Z′, and all X ∈A ′−W , can reach

V−. In this case we are done by the secondary induction hypothesis.

A.8 Exceptional notation

|G|= |V (G)|= n(G), number

‖G‖= |E(G)|= e(G), number
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E(v) = {vu : vu ∈ E}, edge set

K(A,B) = (A∪B,{ab : a 6= b∧ (a,b) ∈ A×B}), graph

K(A) = K(A,A), graph

EG(A,B) = {ab ∈ E(G) : a 6= b∧ (a,b) ∈ A×B}, edge set

A.9 Matching card trick

Consider a deck of 2k+1 cards numbered 1, . . . ,2k+1, and denoted by [2k+1]. The

class chooses a hand H consisting of k+1 of these cards, and gives them to Professor A.

Professor A looks at them, puts one of them in his pocket, and then has a student spread the

remaining k cards face-up on a table. Professor B, who has observed none of this transaction,

now enters the room, looks at the cards on the table and identifies the one in Professor A’s

pocket. How is this done?

Solution. Our arithmetic is done modulo k+1, and we use k+1 instead of 0 for the

representative of its equivalence class. Arrange the cards of H in order as c1 < · · ·< ck+1.

Let x = ∑c∈H c mod k + 1. Professor A hides card cx. When Professor B arrives, he

sees that the cards d1 < · · · < dk+1 in [2k+ 1]r (H− cx) are missing, and he calculates

y := ∑c∈H−x = x− cx. The class is holding cx− 1− (x− 1) = −y cards less than cx and

Professor A is holding cx. It follows that cx = d1−y, and Professor B can calculate the rhs.

Another way of saying this is that Professor B knows the missing cards d1 > · · ·> dk+1.

Then cx = dk+2−(1−y) = dy.
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A.10 Old Versions of Proofs

A.10.1 Vizing’s Theorem

Old Proof. Set ∆ = ∆(G). For each vertex v and (∆+ 1)-edge-coloring f , define f (v) =

[∆+1]r{ f (e) : e ∈ E(v)}; then f (v) is the set of colors that v does not “see”.

We argue by induction on |G|. The base step |G|= 1 is trivial, so consider the induction

step |G|> 1. Fix v ∈V . For S⊆ E(v), let S = EG(v)rS and GS = G−S. By the induction

hypothesis G /0 has a (∆+1)-edge-coloring f /0. Now supose that fS is a (∆+1)-edge-coloring

of GS. Set CS(vw) = f S(w)r fS(S); then CS(vw) is the set of colors that can be used to

color vw in an extension of fS to a (∆+1)-coloring of GS+vw. Notice that

∀vw ∈ E(v), |C/0(vw)| ≥ ∆+1−dG /0(w)−| /0| ≥ 2.

Choose the largest subset S⊆ E(v) such that there exists a (∆+1)-edge-coloring fS of

GS and:

1. |CS(vw)| ≥ 1 for all vw ∈ S and

2. if S 6= E(v) then there exists vuS ∈ S such that |CS(vw)| ≥ 2 for all vw ∈ S− vuS.

This is possible, since S = /0 is a candidate. We claim that S = EG(v), and so G = GE(v) has

an (∆+1)-edge-coloring. Suppose, for a contradiction, S 6= E(v). For each edge vw ∈ S,

choose βw,β
′
w ∈CS(vw) such that βw 6= β ′w if w 6= uS. Consider cases:

Case 0: |S|= 1. Then we can extend fS to a (∆+1)-edge-coloring fE(v) of G = GE(v) by

setting fE(v)(vuS) = βuS .

Case 1: There exist vwS ∈ S−vuS such that βuS /∈ {βx,β
′
x} for all x /∈ {uS,wS}. Then setting

S′ = S+ vuS, extending fS to a (∆+ 1)-edge-coloring fS′ of GS′ by putting fS(vu) = βuS ,

and setting vuS′ = vwS, contradicts the maximality of S.
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Case 2: There exists vwS ∈ S−vuS and β ∈ {βwS ,β
′
wS
} such that β /∈ {βx,β

′
x} for all x 6= wS.

Then setting S′ = S+ vwS, extending fS to a (∆+ 1)-edge-coloring fS′ of GS′ by putting

fS(vwS) = β , and setting vuS′ = vuS contradicts the maximality of S.

Case 3: None of Cases 0–2 hold. Our plan is to modify fS so that Case 1 will hold. Since

Case 0 does not hold, |S| ≥ 2. Set β = βuS . Let M be the multiset (βw,β
′
w : w ∈ S) and C be

the associated set {βw,β
′
w : w ∈ S}. Then |M| = 2|S|−1. Since Cases 1,2 do not hold, β

appears at least three times in M, and every other color γ ∈C appears at least twice in M. It

follows that |C| ≤ |S|−1, and thus

∆+1−|C|− | fS(S)| ≥ ∆+1−|S|+1−|S| ≥ ∆+2− (|S|+ |S|)≥ 2.

So there exists a color α ∈ [∆+1]r (C∪ fS(S)).

Let F be the set of all edges colored α or β , and let P be the component of G[F ]

containing uS. Then P is a path starting at uS and ending at another vertex z. Since

α,β /∈ fS(S), v /∈V (P). Let g be the (∆+1)-edge-coloring resulting from switching α and

β . This does not change the color of any edge in S. It does put α ∈CS(vuS), and α ∈CS(vz),

if vz ∈ S and fS(z′z) = α , where z′z is the last edge of P, but the other CS(vw) are unchanged.

So changing βuS to α and possibly changing one of βz,β
′
z to α , leaves us in Case 1. This

completes the contradiction.

A.10.2 Galvin’s Theorem

Lemma 122. Let D = (V,A) be a digraph such that every induced subgraph of D has a

kernel. If f is a list assignment for D such that every vertex v satisfies d+(v)< | f (v)| then

D has an f -coloring.

Proof. We argue by induction on |D|.
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Base Step: |D| = 1. Let v be the only vertex of D. Then | f (v)| > d+(v) = 0. Thus there

exists a color α ∈ f (v), and we can color v with α .

Induction Step: |D|> 1. Let v0 ∈V and α ∈ f (v0) (it exists as above). Let W = {v ∈V :

α ∈ f (v)}. Note that W 6= /0, since v ∈W . By hypothesis D[W ] has a (nonempty) kernel S.

Color every vertex in S with α . This is possible because S is independent and α ∈ f (v) for

every vertex in S.

To finish, we extend our f -coloring to D′ = D−S so that α is not used for any vertex in

D−S. For this purpose, let f ′ be the list assignment for D′ defined by f ′(v) = f (v)−α . If

D′ has no vertices then we are done. Regardless, |D′|< |D|, so we are done by the induction

hypothesis provided

| f ′(v)|> d+
D′(v) for all v ∈V rS.

If v /∈W then α /∈ f (v), and so

| f ′(v)|= | f (v)|> dD(v)≥ dD′(v).

Otherwise, v ∈W . Since S is a kernel for D[W ], there exists w ∈ S ⊆V rV (D′) such that

vw ∈ A. So

| f ′(v)|= | f (v)−α|> d+
D (v)−1≥ d+

D′(v).

Theorem 123. Every X ,Y -bigraph G satisfies χ ′l (G) = ∆(G).

Proof. Let ∆ = ∆(G) and set H = L(G). Then χ ′l (G) = χl(H) = ∆. Let c : E(G)→ [∆] be a

∆-edge coloring of G. We will apply Lemma 122 to the following orientation D = (E(G),A)

of H. Note that for every edge ee′ ∈ E(H), either e∩ e′ ⊆ X or ee′ ⊆ Y . If e∩ e′ ∈ X , let

ee′ ∈ A iff c(e)> c(e′); if e∩e′ ∈Y let ee′ ∈ A iff c(e)< c(e′). In order to apply Lemma 122,

we need the following two claims.
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Claim (A). ∆+(D)≤ ∆−1.

Proof. Every edge e ∈ E(G) has at most c(e)− 1 out-neighbors e′ with e∩ e′ ∈ X and at

most ∆− c(e) out-neighbors e′ with e∩ e′ ∈ Y .

Claim (B). Every induced subgraph of D′ ⊆ D has a kernel.

Proof. Argue by induction on |D′|. The base step |D′|= 1 is trivial, so consider the induction

step |D′|> 1. Suppose D′ = D[F ], where F ⊆ E(G) =V (D). Let X ′ = {x∈ X : EG(x)∩F 6=

/0}. For each x ∈ X ′ , let ex be the edge of EG(x)∩F with the smallest color c(ex). Then

for every e = xy ∈ F , we have eex ∈ A. Thus Q = {ex : x ∈ X ′} is a kernel of D′ if it is

independent. Otherwise there exist distinct x,x′ ∈ X ′ such that ex∩ ex′ 6= 0. So there exists

y ∈ Y with ex = xy and ex′ = x′y. Suppose c(ex)< c(ex′). Then exex′ ∈ A.

Let D′′ = D′− ex. By the induction hypothesis, D′′ has a kernel S. If ex′ ∈ S then S

is also a kernel for D′, since exex′ ∈ A. Otherwise, there exists e∗ ∈ S such that ex′e∗ ∈ A.

Thus ex′ ∩ e∗ /∈ X by the definition of A and the choice of e′x. So ex′ ∩ e∗ ∈ Y , and thus

e∗ = x∗y for some x∗ ∈ X ′. By the definition of A, c(ex′) < c(e∗). Thus ex ∩ e∗ ∈ Y and

c(ex)< c(ex′)< c(e∗). So exe∗ ∈ A. Thus S is also a kernel for D′.

Finally, consider any ∆-edge-list assignment f for G. It is also a ∆-list assignment

for D. By Lemma 122, using Claims A and B, D has an f -coloring g, and g is also an

f -edge-coloring of G.
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Appendix B: Complex Networks

In the context of network theory, a complex network is a graph (network) with non-trivial

topological features — features that do not occur in simple networks such as lattices or

random graphs but often occur in graphs modelling of real systems.

Most social, biological, and technological networks display substantial non-trivial topo-

logical features, with patterns of connection between their elements that are neither purely

regular nor purely random. Such features include a heavy tail in the Degree Distribution,

a high Clustering Coefficient, assortativity or disassortativity among vertices, Community

Structure, and hierarchical structure. In the case of directed networks these features also

include reciprocity, triad significance profile and other features. In contrast, many of the

mathematical models of networks that have been studied in the past, such as lattices and

random graphs, do not show these features. The most complex structures can be realized by

networks with a medium number of interactions [34]. This corresponds to the fact that the

maximum information content (entropy) is obtained for medium probabilities.

Two well-known and much studied classes of complex networks are Scale Free Networks

[8] and Small World Networks, [54] [6] whose discovery and definition are canonical case-

studies in the field. Both are characterized by specific structural features — power-law

degree distributions for the former and short path lengths and high clustering for the latter.
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However, as the study of complex networks has continued to grow in importance and

popularity, many other aspects of network structure have attracted attention as well.

B.1 Degree Distribution

The degree of a node in a network is the number of connections or edges the node has to

other nodes. If a network is directed, meaning that edges point in one direction from one

node to another node, then nodes have two different degrees, the in-degree, which is the

number of incoming edges, and the out-degree, which is the number of outgoing edges.

The degree distribution P(k) of a network is then defined to be the fraction of nodes in

the network with degree k. Thus if there are n nodes in total in a network and nk of them

have degree k, then P(k) = nk
n .

The same information is also sometimes presented in the form of a cumulative degree

distribution, the fraction of nodes with degree smaller than k, or even the complimentary

cumulative degree distribution, the fraction of nodes with degree greater than or equal to k

(1−C if one considers C as the cumulative degree distribution; i.e. the complement of C).

The degree distribution is very important in studying both real and theoretical networks.

The simplest network model, for example, the (Bernoulli) random graph, in which each

of n nodes is connected (or not) with independent probability p (or 1− p), has a binomial

distribution of degrees k:

P(k) =
(

n−1
k

)
pk(1− p)n−1−k

(or Poisson in the limit of large n). Most networks in the real world, however, have degree

distributions very different from this. Most are highly right-skewed, meaning that a large

majority of nodes have low degree but a small number, known as "hubs", have high degree.

Some networks, notably the Internet, the world wide web, and some social networks are
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found to have degree distributions that approximately follow a power law: P(k) ∼ k−γ ,

where γ is a constant. Such networks are called Scale Free Networks and have attracted

particular attention for their structural and dynamical properties.

B.2 Small World Networks

A small-world network is a type of mathematical graph in which most nodes are not

neighbors of one another, but the neighbors of any given node are likely to be neighbors

of each other and most nodes can be reached from every other node by a small number of

hops or steps. Specifically, a small-world network is defined to be a network where the

typical distance L between two randomly chosen nodes (the number of steps required) grows

proportionally to the logarithm of the number of nodes N in the network, that is [54]

L ∝ logN

while the clustering coefficient is not small. In the context of a social network, this results

in the small world phenomenon of strangers being linked by a short chain of acquaintances.

Many empirical graphs show the small-world effect, e.g., social networks, the underlying

architecture of the Internet, wikis such as Wikipedia, and gene networks.

Intuitively, a network is called a small-world network by analogy with the small-world

phenomenon (popularly known as six degrees of separation). The small world hypothesis,

which was first described by the Hungarian writer Frigyes Karinthy in 1929, and tested

experimentally by Stanley Milgram (1967), is the idea that two arbitrary people are connected

by only six degrees of separation, i.e. the diameter of the corresponding graph of social

connections is not much larger than six. In 1998, Duncan J. Watts and Steven Strogatz

published the first small-world network model, which through a single parameter smoothly
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interpolates between a random graph and a lattice. Their model demonstrated that with the

addition of only a small number of long-range links, a regular graph, in which the diameter is

proportional to the size of the network, can be transformed into a "small world" in which the

average number of edges between any two vertices is very small (mathematically, it should

grow as the logarithm of the size of the network), while the clustering coefficient stays large.

It is known that a wide variety of abstract graphs exhibit the small-world property, e.g.,

random graphs and scale-free networks. Further, real world networks such as the World

Wide Web and the metabolic network also exhibit this property.

For the purpose of this study, we tested the network as a whole for the presence of small

world. If the entire network was not found to be a small world, the network was broken into

graph connected components and iteratively tested for small world network, based on the

small world score as given by Humphries et al. [30]. The test is based on a metric called

small world score. We generate a random E–R graph with a given edge probability and

define:

Lg: mean shortest path length of graph G

C∆
g : Clustering coefficient of G

Lrand: mean shortest path of random E-R graph

C∆
rand: Clustering coefficient of random E-R graph

where the definition of clustering coefficient, based on transitivity is given by:

C∆ =
3×number of triangles

number of paths of length 2

with triangle being the set of three nodes, with each node connected to the other two.

A network in the analysis was considered small world if Lg > Lrand and C∆
g �C∆

rand .

122



We then calculate the ratio of clustering coefficient of G to that of the random E-R graph,

γ
∆
g =

C∆
g

C∆
rand

and the ratio of shortest path length of graph G to that of random E-R graph,

λg =
Lg

Lrand

Small world score, S∆ is then calculated as

S∆ =
γ∆

g

λg

A network qualifies to be a small world, if S∆ > 1.

B.3 Community Structure

Community structure refers to the occurrence of groups of nodes in a network that are

more densely connected internally than with the rest of the network. This inhomogeneity of

connections suggests that the network has certain natural divisions within it.

Communities are often defined in terms of the partition of the set of vertices, that is

each node is put into one and only one community. This is a useful simplification and most

community detection methods find this type of community structure. Social networks might

have overlapping communities, where each vertex represents a person, and the communities

represent the different groups of friends: one community for family, another community

for co-workers, one for friends in the same sports club, and so on. The use of cliques for

community detection is an example of how such overlapping community structure can be

found.

Finding communities within an arbitrary network can be a computationally difficult

task. The number of communities, if any, within the network is typically unknown and the
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communities are often of unequal size and/or density. Despite these difficulties, however,

several methods for community finding have been developed and employed with varying

levels of success.

Out of the available methods, we used the Louvain method [13], based on modularity

maximization.

Modularity is a scale value (ranging between -1 and 1) that relates the structure of

the community with the network outside the community by comparing the density of the

edges within to those present outside the community. The Louvain Method is a greedy

optimization method (complexity O(nlogn)), iteratively optimizing local communities until

global modularity can no longer be improved, given small perturbations in community

state.This method is an unsupervised, two-phase iterative method.

The value to be optimized is modularity, defined as a value between -1 and 1 that

measures the density of links inside communities compared to links between communities

[13]. For a weighted graph, modularity is defined as:

Q =
1

2m
Σi j

[
Ai j−

kik j

2m

]
δ (ci,c j),

where: Ai j represents the edge weight between nodes i and j;

ki and k j are the sum of the weights of the edges attached to nodes i and j respectively;

m is the sum of all of the edge weights in the graph;

ci and c j are the communities of the nodes; and

δ is a simple delta function.

In order to maximize this value efficiently, the Louvain Method has two phases that are

repeated iteratively.
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First, each node in the network is assigned to its own community. Then for each node i,

the change in modularity is calculated for removing i from its own community and moving

it into the community of each neighbor j of i This value is easily calculated by [13]

∆Q =

[
Σin +2ki,in

2m
−
(

Σtot + ki

2m

)2]
−
[

Σin

2m
−
(

Σtot

2m

)2

−
(

ki

2m

)2]
Where Σin is sum of all the weights of the links inside the community i is moving into,

Σtot is the sum of all the weights of the links to nodes in the community, ki is the weighted

degree of i, ki,in is the sum of the weights of the links between i and other nodes in the

community, and m is the sum of the weights of all links in the network. Then, once this

value is calculated for all communities i is connected to, i is placed into the community

that resulted in the greatest modularity increase. If no increase is possible, i remains in its

original community. This process is applied repeatedly and sequentially to all nodes until

no modularity increase can occur. Once this local maximum of modularity is hit, the first

phase has ended.

In the second phase of the algorithm, it groups all of the nodes in the same community

and builds a new network where nodes are the communities from the previous phase. Any

links between nodes of the same community are now represented by self loops on the new

community node and links from multiple nodes in the same community to a node in a

different community are represented by weighted edges between communities. Once the

new network is created, the second phase has ended and the first phase can be re-applied to

the new network.
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B.4 Clustering Coefficient

An important property of a graph is the clustering coefficient. The clustering coefficient

is the measure of the the extent to which one’s friends are also friends of each other. This

measure has become popular due to a 1998 paper in Nature by Watts and Strogatz [54]. This

property is sometimes called the local clustering coefficient.

A graph G = (V,E) formally consists of a set of vertices V and a set of edges E between

them. An edge ei j connects vertex vi with vertex v j

The neighbourhood Ni for a vertex vi is defined as its immediately connected neighbours

as follows:

Ni = {v j : ei j ∈ E ∨ e ji ∈ E}.

The local clustering coefficient Ci for a vertex vi is then given by the proportion of links

between the vertices within its neighbourhood divided by the number of links that could

possibly exist between them. For a directed graph, ei j is distinct from e ji, and therefore for

each neighbourhood Ni there are ki(ki−1) links that could exist among the vertices within

the neighbourhood (ki is the number of neighbours of a vertex). Thus, the local clustering

coefficient for directed graphs is given as [54]

Ci =
|{e jk : v j,vk ∈ Ni,e jk ∈ E}|

ki(ki−1)
.

For an undirected graph, ei j and e ji are identical. Therefore if a vertex vi has ki neighbors,

ki(ki−1)
2 edges could exist among the vertices within the neighbourhood. Therefore a local

clustering coefficient for undirected graphs can also be defined as

Ci =
2|{e jk : v j,vk ∈ Ni,e jk ∈ E}|

ki(ki−1)
.
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A few more variations of methods for calculating clustering coefficients exist in literature.

For unweighted graphs, the clustering of a node u is the fraction of possible triangles through

that node that exist,

cu =
2T (u)

deg(u)(deg(u)−1)
,

where T (u) is the number of triangles through node u and deg(u) is the degree of u.

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge

weights [47],

cu =
1

deg(u)(deg(u)−1))∑
uv
(ŵuvŵuwŵvw)

1/3.

The edge weights ŵuv are normalized by the maximum weight in the network ŵuv =

wuv/max(w). The value of cu is assigned to 0 if deg(u)< 2.

B.5 Scale Free Networks

A scale-free network is a network whose degree distribution follows a power law, at

least asymptotically. That is, the fraction P(k) of nodes in the network having k connections

to other nodes goes for large values of k as

P(k)∼ k−γ

where γ is a parameter whose value is typically in the range 2 < γ < 3, although

occasionally it may lie outside these bounds [43] [18].

Many networks have been reported to be scale-free, although statistical analysis has

refuted many of these claims and seriously questioned others [20]. Preferential attachment

and the fitness model have been proposed as mechanisms to explain conjectured power law

degree distributions in real networks.
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Intuitively, a network is named scale-free [8] if its degree distribution, i.e., the probability

that a node selected uniformly at random has a certain number of links (degree), follows a

particular mathematical function called a power law. The power law implies that the degree

distribution of these networks has no characteristic scale. In contrast, networks with a single

well-defined scale are somewhat similar to a lattice in that every node has (roughly) the same

degree. Examples of networks with a single scale include the Erdős–Rényi (ER) random

graph and hypercubes. In a network with a scale-free degree distribution, some vertices

have a degree that is orders of magnitude larger than the average - these vertices are often

called "hubs", although this is a bit misleading as there is no inherent threshold above which

a node can be viewed as a hub. If there were such a threshold, the network would not be

scale-free.

For the current study, we tested the presence of scale free degree distributions using the

metric given by Clauset et al. [20].
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