
TOP-C: Task-Oriented Parallel C for

Distributed and Shared Memory

Gene Cooperman∗

College of Computer Science
Northeastern University
Boston, MA 02115
gene@ccs.neu.edu

Summary. The “holy grail” of parallel software systems is a parallel programming
language that will be as easy to use as a sequential one, while maintaining most of
the potential efficiency of the underlying parallel hardware. TOP-C (Task-Oriented
Parallel C) attempts such a model by presenting a task abstraction that hides
much of the details of the underlying hardware. DSM (Distributed Shared Memory)
also attemps such a model, but along an orthogonal direction. By presenting a
shared memory model of memory, it hides much of the details of message-passing
required by the underlying hardware. This article reviews the TOP-C model and
then presents ongoing research on combining the advantages of both models in a
single system.

1. Introduction

This paper proposes the TOP-C model as a way to easily organize com-
putations on DSM systems with many processors, while maintaining high
concurrency. The proposed model allows the application writer to implicitly
declare segments of his environment that correspond to the program objects
that he is using. The segments are implicit in that the application writer need
only declare to TOP-C which segments are modified by a given routine.

TOP-C has been successful in executing many large, parallel applica-
tions [4, 8, 10, 11, 12, 17]. TOP-C is implemented as a C library, and does
not require a modification of the programming language of the application.
As with any C library, the TOP-C library can also be used by a C++ pro-
gram. One can choose any of three TOP-C libraries to choose between: SMP
(Symmetric MultiProcessing, or shared memory) architectures, distributed
memory architectures, and a sequential architecture. The application writer
may continue to use his or her favorite programming language as long as that
language has an interface to C libraries.

It should be noted that current high-end SMP architectures (many
processors) are quite similar to DSM systems with hardware support. Hence,
there appears to be a gradual progression from low-latency SMP through
medium-latency DSM systems, with no sharp dividing line. Accordingly, we
talk about the SMP version of the TOP-C model with the intention that this
also applies to DSM.

∗ Supported in part by NSF Grant CCR-9732330.



2 Gene Cooperman

Section 2. describes the TOP-C model. Section 3. then motivates why the
model needs to be extended when the environment uses a lot of memory.
Section 4. then describes a natural way to enhance the TOP-C model by
providing an application abstraction of segments. If the application program
is an object-oriented C++ program, then each segment will often correspond
to an object.

Section 5. then describes how the enhanced TOP-C model maps onto
a DSM architecture. In particular, there is an important issue of how the
multiple segments of the TOP-C environment map onto the multiple pages
of a DSM system. We are still in the process of obtaining a suitable DSM,
and so we have not had the opportunity to test TOP-C in this environment.
Nevertheless, a paper analysis describes many of the DSM features that we
expect will be necessary for TOP-C to run efficiently on top of DSM.

2. The TOP-C Model

The TOP-C model has been described in [7]. The model is sufficiently flexible
to also be easily ported to interactive languages [5, 6]. The model has also
been applied to metacomputing [9], due to the ease of checkpointing the
current state and sending a copy of that state to a new process joining
the computation. The model has been successfully used in a variety of
applications [4, 8, 10, 11, 12, 17].

The model allows a single file of application code to be executed as a
sequential, SMP, or distributed memory application, by simply linking with
a different library. Portability is emphasized by building on top of a POSIX
threads library (for SMP) or MPI [14] (for distributed memory). MPI was
chosen as a widely available message-passing standard, with good efficiency.
The TOP-C distribution also contains its own small, unoptimized subset
implementation of MPI, allowing one to quickly set up a small, self-contained
application. Further, the portability of TOP-C makes it easy to re-target to
another message-passing platform, such as PVM. TOP-C is freely distributed
at ftp://ftp.ccs.neu.edu/pub/people/gene/top-c/.

The programming style is SPMD (Single Program, Multiple Data). This
is executed in the context of a master-slave architecture and an environment
or global state. This environment receives lazy, incremental updates, in a
fashion that will be made clear later.

The user interface has purposely been kept simple by restricting the
user interface to a single, primary system call: master_slave(). That func-
tion requires as parameters, four application functions declared by the user:
set_task_input(), do_task(), get_task_output() and
update_environment(). The philosophy is to present the higher-level task
abstraction to the application. This should be contrasted to lower level inter-
faces that present either a message-passing abstraction or a shared memory
abstraction.



TOP-C: Task-Oriented Parallel C for Distributed and Shared Memory 3

The task is the first abstraction. The first two application-defined func-
tions, set_task_input() and do_task(), implicitly define the input-output
behavior of the task. The third function, get_task_output(), returns an
action to be taken, based upon the task output. The three primary actions
are NO_ACTION, REDO, and UPDATE. When the application specifies the UPDATE
action, the application-specific function, update_environment() is called on
each process (including the master). The routine, update_environment()
uses the task output to introduce an incremental update.

The figure below illustrates the flow of control between master and each
of several slaves for a task.

MASTER SLAVE

✛
✚

✘
✙set task input()

✛
✚

✘
✙do task(input)

✛
✚

✘
✙

get task output(input,
output)

✛
✚

✘
✙update environment(input, output)

PPPPPPPPPq

input

✑
✑

✑
✑

✑✑✰

output

✑
✑
✑
✑✑✸

(if action == REDO)

PPPPPPPPq

(if action == UPDATE)

Figure 2.1. TOP-C Programmer’s Model

A process always completes its current operation, before reading a pending
message for the next operation. A message from the master to a slave
requesting an update to the slave’s copy of the environment always takes
precedence over a message specifying a new task. A REDO action results in



4 Gene Cooperman

the original task input being sent back to the same slave, typically after a
message to update the environment.

In addition to the task, the second key to the TOP-C model is the
environment (global state). The environment, like the task, is not explicitly
declared by the application. Rather, it is implicitly defined by the application
routines. Each of the four application routines may read the most recent local
environment. However, only update_environment() may modify the data in
the environment. The environment is read and written only by the application
routines, and not by any TOP-C system routine.

The most important issue for TOP-C is to allow tasks to concurrently read
and make a request to modify the environment. As seen in figure 2., a decision
to modify the environment can only happen if get_task_output() returns
an UPDATE action. This action both allows TOP-C to record at what “time”
the environment was last modified, and to then call update_environment().
In the case of distributed memory, update_environment() is called on each
process, including the master. In the case of shared memory or sequential
code, update_environment() is called only on the master.

3. Concurrency Issues for Shared Memory

Note that for any shared memory system (not just TOP-C), there is an
inherent reader-writer problem when one thread (in this case the master)
writes to a region of memory while another thread is reading the same region
of memory. The TOP-C methodology reduces this to a single writer-multiple
reader problem. The TOP-C solution is to allow both memory operations
to proceed, but to later detect the memory collision and account for it. The
method is analogous to the method of “optimistic concurrency” in distributed
databases.

Concurrency is maintained in TOP-C in an application-specific manner.
The system provides a utility, is_up_to_date(), callable from within the
application routine, update_environment(). This routine will determine
whether the environment was modified on the master after the task input
under consideration was generated on the master, and before the task output
was received by the master. Any memory collisions are a special case of this
more general situation, and so will also be detected.

If the environment was not modified, then the application trivially attains
perfect concurrency. If the environment was modified, then the application
routine, get_task_output(), may either return a REDO action, or employ an
application-specific technique to “patch” the task output to take account of
the modified environment. The get_task_output() routine receives the task
input, in addition to the task output, precisely to make it easier to patch the
output.

The effect of this concurrency strategy is that the environment acts as a
single large “page” of memory. If any task causes the page to be “touched”,



TOP-C: Task-Oriented Parallel C for Distributed and Shared Memory 5

then all processes may have to read an update to the page. The page update
is handled in a lazy manner, providing a type of latency hiding. However,
the presence of only a single, atomic environment effectively means that false
sharing of data is widespread within the system. This is the current state of
TOP-C.

The issue of false sharing of a single monolithic environment tends to es-
pecially hurt TOP-C applications that require a shared memory model. This
occurs because of a natural dichotomy in TOP-C applications. Applications
that require only a smaller amount of memory for the environment tend to
run comfortably in the distributed memory model, in which the environment
is replicated among many processes. However, applications requiring a large
amount of memory for the environment will prefer a shared memory environ-
ment. Otherwise, the cost of physical memory often makes it uneconomic to
find a site with sufficient memory on each processor to allow the replication
of a large environment within each process.

Thus, large environments favor a shared memory model. This software
view of memory can be achieved either by an SMP architecture or by a
DSM architecture on top of many workstations. The next section discusses
an experimental version of TOP-C that better accommodates a shared view
of memory by providing multiple pages, or segments, within the environment.

4. Multiple Segments within an Environment

In the experimental TOP-C model, the environment is replaced by multiple
segments. The use of multiple segments forces us to change one command
and one action in the TOP-C model: is_up_to_date() and UPDATE. All
other aspects of the TOP-C retain the same simplicity.

Recall that the TOP-C environment is never explicitly declared. Rather
it is implicitly defined by the application programmer as those portions
of memory within a slave process that are read by do_task() and that
are read or written to by update_environment(). (In addition, the master
routines set_task_input() and get_task_output() may also read the
environment.)

In our implementation of segments, we retain this idea that segments
are implicit referenced, but never explicitly declared. Since the environment
is replaced by segments, the utility is_up_to_date() must be extended to
include a single parameter, specifying for which segments the query is being
made. Currently, this parameter is specified as a string representing a set of
numbers. For example, "1,3,5-7" represents segments 1, 3, and 5 through 7.

Second, the command update_environment() is now used to update one
or more segments. It would be possible to add an additional requirement
for the application programmer to have update_environment() return a
string, such as "4-8", indicating which segments are being updates. This
would allow TOP-C to maintain an internal table that updates a timestamp



6 Gene Cooperman

for each segment, and then answer any application queries of the form
is_up_to_date("1,3,5-7"). However, it was felt to be a simpler syntax to
instead extend the UPDATE action returned by get_task_output(). Since the
application programmer already must return the action UPDATE (implemented
as a C constant), we now require the application programmer to instead
return a parametrized action such as UPDATE("4-8") (implemented as a
C function macro).

It is clear that the internal table of timestamps for each segment
can be maintained only on the master process, since queries of the form
is_up_to_date() and updates of the form UPDATE() both originate on the
master process. As each new task originates on the master, a new task ID
is issued as a monotonically increasing sequence. The timestamps for each
segment are then implemented as task ID’s.

So an is_up_to_date() query can be answered by TOP-C simply
by determining the task ID of the current task being processed by
get_task_output(). That current task ID is compared with the maximum of
the timestamps for each segment being queried by is_up_to_date(). Those
timestamps are maintained by TOP-C in its internal table, and are task ID’s
corresponding to the last update_environment() for each queried segment.
If the current task ID is “newer” (larger), then TOP-C returns true. Other-
wise, it returns false.

Thus, the extensions to is_up_to_date() and UPDATE() impose a mini-
mal additional burden on the TOP-C application programmer, while provid-
ing strong benefits in the form of higher concurrency. The partition of the
environment memory into segments by the application will often be a natural
extension of the application. For example, large application tables or other
arrays can be subdivided by partitioning the index set into equal subinter-
vals. Object-oriented applications will often partition their environment by
associating an object ID with each object, and associating a TOP-C segment
with the memory used by an object. The object ID can then also be used as
a segment number.

5. TOP-C over Distributed Shared Memory

Existing DSM systems primarily provide physical memory management and
memory consistency. TOP-C provides memory management in the form
of implicitly specified TOP-C segments, where the user is responsible for
the memory organization, and the TOP-C framework provides consistency
management for this memory. Therefore the functionality of TOP-C and
a DSM system intersect in the area of memory management. This section
discusses the possible benefits and design of a combined system. There is not
yet an implementation of the ideas in this section.

The introduction of shared memory to TOP-C introduces a new problem
that was not present in the distributed memory of TOP-C. When the master



TOP-C: Task-Oriented Parallel C for Distributed and Shared Memory 7

calls update_environment(), writes on the master take effect immediately
on the slave, due to the shared memory. This is handled in SMP through a
standard single-writer–multiple-reader solution by which readers may later
re-read any modified segment through a REDO action. Nevertheless, this
strategy also imposes a burden on the application writer in that do_task()
may return a wrong answer after reading inconsistent data, but it must be
guaranteed never to hang due to inconsistent data. DSM systems can emulate
the lazy updates of TOP-C under distributed memory by implementing lazy
release consistency.

Many DSM systems, such as TreadMarks [1], Quarks [16] and the earlier
Munin [2] system, support release consistency. Release consistency allows for
a weaker memory model in which an acquire operation is required before
reading or writing a shared variable, and a release operation is required
before another processor can acquire a shared variable. Release consistency
allows initiation of a new acquire operation without waiting for pending reads
to complete, and it allows a new write without waiting for pending release
operations to complete.

A typical implementation of release consistency is to implement two
library routines, acquire and release, (Tmk_lock_acquire(lock_handle)
and Tmk_lock_release(lock_handle) in the case of TreadMarks), which
operate on a lock handle (an integer in the case of TreadMarks). After
an acquire operation, all writes by the application are noted by the DSM
system until a corresponding release operation. (Interception of writes can
be implemented by the UNIX system call, mprotect().) If a second process
acquires the same lock, then all of the modified pages will be replicated on
the second process.

Release consistency is typically implemented in one of two variations.
These two variations differ in how to handle write updates. The first variation
is lazy release consistency. In lazy release consistency, a write update occurs
only after the call to release() by the writing process, and when a second
process then calls acquire() in an attempt to access the same page of
memory. The second variation is eager release consistency. In this variation,
modified pages are updated for all processes holding a copy of the page at the
time of the call to release(). This update can be “batched” for efficiency,
but the original call to release() may not be seen to complete by a second
process until the second process has received the “eager” write updates.

The preferred DSM policy for TOP-C is one of lazy release consistency

in which there are no page updates seen by other processes and no page
invalidations until after the call to release() and at the time of a second call
to acquire(). This mimics the TOP-C memory model of lazy, incremental
updates. This fits well with the TOP-C methodology, in which writes to any
one TOP-C segment are likely to be infrequent.

If TOP-C were implemented on top of a DSM system, this would re-
quire appropriate calls of acquire() and release() by TOP-C to the



8 Gene Cooperman

underlying DSM system. One would call acquire() before a call to
update_environment() and release() after the call. Before a call to
do_task() (on a slave), one would call acquire() immediately followed by
release() in order to receive the modified pages.

If one has implemented multiple segments of the environment in TOP-
C, one would invoke a different lock handle for each segment. It might be-
come necessary for update_environment() to take an additional argument,
specifying which segment to update. TOP-C would then guarantee to call
update_environment() repeatedly, once for each segment that needs to be
updated.

Plans are underway to test TOP-C on top of a DSM system. The
experimental version of TOP-C (using shared memory) will be tested. This
will provide important feedback about merging the TOP-C shared memory
model with the shared memory model used by DSM.

1. C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel, “TreadMarks: Shared Memory Computing on Networks of
Workstations”, IEEE Computer, Vol. 29, No. 2, pp. 18-28, February 1996.

2. J. Carter, J. Bennett, and W. Zwanpoel, Implementation and Performance of
Munin, Proc. 13th ACM Symp. Operating System Principles, 1991, pp. 152–164.

3. R. Chow and T. Johnson, Distributed Operating Systems and Algorithms,
Addison Wesley Longman, 1997.

4. G. Cooperman, “Practical Task-Oriented Parallelism for Gaussian Elimination
in Distributed Memory”, Linear Algebra and its Applications 275-276, 1998,
pp. 107–120.

5. G. Cooperman, GAP/MPI: Facilitating Parallelism, Proc. of DIMACS Work-
shop on Groups and Computation II 28, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, L. Finkelstein and W.M. Kantor
(eds.), AMS, Providence, RI, 1997, 69–84.

6. G. Cooperman, STAR/MPI: Binding a Parallel Library to Interactive Symbolic
Algebra Systems, Proc. of International Symposium on Symbolic and Algebraic
Computation (ISSAC ’95), ACM Press, 126–132.

7. G. Cooperman, TOP-C: A Task-Oriented Parallel C Interface, 5th Inter-
national Symposium on High Performance Distributed Computing (HPDC-
5), 1996, IEEE Press, 141–150 (software at ftp://ftp.ccs.neu.edu
/pub/people/gene/top-c/ ).

8. G. Cooperman, L.Finkelstein, M.Tselman and B.York, Constructing Permuta-
tion Representations for Matrix Groups, J. Symbolic Computation 24, 1997,
pp. 1–18.

9. G. Cooperman and V. Grinberg, “TOP-WEB: Task-Oriented Metacomputing
on the WEB”, International Journal of Parallel and Distributed Systems and
Networks 1, 1998, pp. 184–192; a shorter version appears as: “TOP-WEB:
Task-Oriented Metacomputing on the Web”, G. Cooperman and V. Grinberg,
Proceedings of Ninth IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS-97), IASTED/Acta Press, Anaheim,
1997, pp. 279–286.



TOP-C: Task-Oriented Parallel C for Distributed and Shared Memory 9

10. G. Cooperman and G. Havas, Practical parallel coset enumeration, Proc.
of Workshop on High Performance Computation and Gigabit Local Area
Networks, G. Cooperman, G. Michler and H. Vinck (eds.), Lecture notes in
control and information sciences 226, Springer Verlag, pp. 15–27.

11. G. Cooperman, G. Hiss, K. Lux, and Jürgen Müller, The Brauer tree of the
principal 19-block of the sporadic simple Thompson group, J. of Experimental
Mathematics 6(4), 1997, pp. 293–300.

12. G. Cooperman and M. Tselman, New Sequential and Parallel Algorithms for
Generating High Dimension Hecke Algebras using the Condensation Technique,
Proc. of International Symposium on Symbolic and Algebraic Computation
(ISSAC ’96), ACM Press, 155–160.

13. G.C. Fox, W. Furmanski, M. Chen, C. Rebbi and J. Cowie, WebWork: Inte-
grated Programming Environment Tools for National and Grand Challenges,
Proc, of Supercomputing ’95.

14. W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT Press, 1994.
15. J. Protić, M. Tomašević, V. Milutinović, Distributed Shared Memory: Concepts

and Systems, IEEE Computer Society Press, 1998.
16. M. Swanson, L. Stoller, J. Carter, “Making Distributed Shared Memory Sim-

ple, Yet Efficient”, Proc. of the 3rd Int’l Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS’98), pages 2–13, March,
1998.

17. M. Tselman, Computing permutation representations for matrix groups in a
distributed environment, Proc. of DIMACSWorkshop on Groups and Computa-
tion II 28, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, L. Finkelstein and W.M. Kantor (eds.), AMS, Providence, RI, 1997,
371–382.


