
TOP-C: A Task-Oriented Parallel C Interface

Gene Cooperman

1;2

College of Computer Science

Northeastern University

Boston, MA 02115

gene@ccs.neu.edu

Abstract

The goal of this work is to simplify parallel ap-

plications development, and thus ease the learning

barriers faced by non-experts. It is especially useful

where there is little data-parallelism to be recognized

by a compiler. The applications programmer need

learn the intricacies of only one primary subroutine

in order to get the full bene�ts of the parallel inter-

face. The applications programmer de�nes a high

level concept, the task, that depends only on his ap-

plication, and not on any particular parallel library.

The task is de�ned by its three phases: (a) the task

input, (b) sequential code to execute the task, and

(c) any modi�cations of global variables that occur

as a result of the task. In particular, side e�ects

(which change global variable values) must not oc-

cur in phase (b). Forcing the user to re-organize his

computation in these terms allows us to present the

applications programmer with a single global envi-

ronment visible to all processors (whether on a SMP

or a NOW architecture), in the context of a master-

slave architecture.

Both a shared memory implementation (running

on an SGI or SUN Solaris architecture) and a NOW

memory implementation (running on top of MPI)

are described. The implementations were tested by

a naive program for integer factorization, and by a

more sophisticated Todd-Coxeter coset enumeration.

Integer factorization was chosen so as to exercise

the major features of TOP-C in an unambiguous

context.

1

Partially supported by NSF Grant CCR-9509783.

2

Appeared in HPDC-5, 1996, IEEE Press, pp. 141{150

1 Introduction

TOP-C is a task-oriented parallel C interface.

It presents a master-slave task architecture that

greatly eases the parallelization of code. It is in-

tended for applications where a compiler would

have di�culty recognizing opportunities for data-

parallelism.

The model has been implemented for both shared

memory processors (SMP) and networks of work-

stations (NOW). There is also a sequential version

useful during development, which runs the same ap-

plication code. Ease-of-use has been a strong mo-

tivation behind its design. For this reason, TOP-

C is organized in a SPMD style, with one pri-

mary subroutine call to invoke it. Its main fea-

tures are: (a) task-parallelism, (b) a single shared,

global data structure, and (c) restricted master-

slave communication. Further, there is a data struc-

ture shared among all processors, whose modi�ca-

tion is restricted by a certain protocol. This al-

lows the system to notify a task if its computation

was done with respect to a shared data structure

that has later been modi�ed. By presenting this in-

formation directly to the application programmer,

an application-dependent decision can be made as

to whether the concurrency was valid or whether a

portion of the computation should be re-computed.

TOP-C has been used to develop a parallel coset

enumerator on up to 16 processors of a SGI Power

Challenger Array with nearly linear scalability [6]

(also see section 7.1). It uses the Todd-Coxeter al-

gorithm for a mathematical group presented by rela-

tions, in an algorithm that is reminiscent of Knuth-

Bendix or Gr�obner bases.

The master-slave model has particular advan-

tages to help non-experts over the learning barrier.

It is deadlock-free. Debugging and reasoning about

program logic are aided, since the master can pro-

vide a trace of all messages. This implies that the

user is presented with a total event ordering for ini-

tiation and completion of tasks. Further, that total

ordering is consistent with the partial event order-

ing for task initiation and completion by the many

concurrent processes.

The system is described in outline in section 2.

Its details are described through an example in sec-

tion 3. Section 4 contains a discussion of the issues

of such a model. Section 5 discusses tracing and

debugging, followed by a description of the imple-

mentation (section 6) and some timings on three

parallel/distributed architectures (section 7).

1.1 Previous work

TOP-C grew out of e�orts to parallelize problems

in symbolic and especially algebraic computation.

The experience in symbolic computation presents a

sharp contrast to the experience in numeric com-

putation, where there was much early work using

data-parallelism. Symbolic computations tend to

have many fewer opportunities for data parallelism.

Consider for example the Euclidean GCD algorithm

(greatest common divisor) and its many generaliza-

tions to polynomial rings and other algebraic do-

mains. This lack of data-parallelism may be par-

tially responsible for the lower level of parallelism

in the symbolic algebra user community. Although

there was much early work in parallelism for sym-

bolic algebra [8, 16, 22], user practice continues to

be dominated by such sequential systems as Axiom,

MAPLE, Mathematica and Reduce. This observa-

tion provided a strong motivation for keeping the

TOP-C parallel interface as simple as possible.

DSC [9] provides an early approach from sym-

bolic algebra with a philosophy like that of TOP-

C. DSC runs in LISP and C, and has been used

for primality testing and polynomial factorization

over large �nite �elds. It employs a RPC model,

although it can also distribute C or LISP code to

the remote processor for execution.

A forerunner of TOP-C is STAR/MPI [4], which

is useful primarily for coarse-grained parallelism.

STAR/MPI runs only in interpreted languages us-

ing MPI [13, 14] over a network of workstations.

(It uses primarily the point-to-point communication

layer and could easily be ported to another library

capable of distributed memory, such as PVM [15].)

STAR/MPI runs on top of GCL LISP and GAP

(a general purpose language for \Groups And Pro-

gramming") [18]. It is implemented through a layer

that sends a LISP or GAP expression as a string for

parsing and evaluation on the remote processor. It

does not run on shared memory machines due to the

di�culty of retro-�tting a parallel garbage collector.

To date, STAR/MPI has been used for �nding

a permutation representation of degree 9,606,125

(acting on conjugacy classes) from a matrix repre-

sentation for the sporadic simple group Ly. The

original computation required 4-1/2 days on a

SPARC-10, and allowed the permutation generators

to be stored and distributed to other researchers for

the �rst time [5]. The parallel version (using ten

25 MHz SPARC-10's) reduced the time from 4-1/2

days to 1/2 day [20].

The system has also been used with a new al-

gorithm for the condensation method in order to

obtain for the �rst time a Hecke algebra (conden-

sation algebra) with matrix dimension 5693 over

the �nite �eld GF(2), for the sporadic simple group

J

4

, which has a permutation representation of de-

gree 173,067,389 [7]. The computation required four

75 MHz SPARC-5's and two 25 MHz SPARC-10's

running over 3 days. The system has also been

successfully used in brief experiments parallelizing

pre-existing sequential code for the Macsyma im-

plementation (on top of GCL Common LISP) of

Gr�obner bases by Zacharias [21] and for the GAP

implementation of the Schreier-Sims test for permu-

tation group membership (implemented jointly with

A. Hulpke of RWTH, Aachen, Germany).

Hulpke has also used this system to parallelize

polynomial factorization modulo di�erent primes

(using Hensel lifting) and to identify Galois groups

by computation of resolvent polynomials in parallel.

2 Basic Concepts

A master-slave architecture consists of a unique

processor, designated the master, and arbitrarily

many other processors, designated slaves. Commu-

nication is constrained to pass only between master

and slaves, and not among slaves. (An exception

is described in section 3.4.) As we shall see, com-

munication concerning a particular task is further

constrained, in that the �rst communication con-

cerning a new task must be initiated by the master.

Hence, the master generates new tasks to be done,

and the slave executes them.

The primary interface to TOP-C is an invocation

of the form:

master_slave(get_task, do_task,

get_task_result, update_environment);

where the four variables, get_task, do_task,

get_task_result and update_environment, are

pointers to functions de�ned by the user. This call

2

is embedded in a user program that is executed

on all processors, thus maintaining a SPMD (Sin-

gle Program, Multiple Data) programming style.

This invocation causes a parallel program to exe-

cute. In the special case of a single slave, the pro-

gram is equivalent to the sequential pseudo-code,

below. The life cycle of a single task is displayed

graphically on the next page. In the parallel ver-

sion, di�erent tasks may be overlapped arbitrarily.

MASTER SLAVE

#

"

!

get task()

#

"

!

do task(task)

#

"

!

get task result(result, task)

#

"

!

update environment(result, task)

P

P

P

P

P

P

P

P

P

P

Pq

task

�

�

�

�

�

�

�+

result

�

�

�

�

�

�3

(if action == REDO)

P

P

P

P

P

P

P

P

P

Pq

(if action == UPDATE)

while (NOTASK <> (task = get_task())) do [on master]

redo:

result = do_task(task); [on slave]

action = get_task_result(result, task); [on master]

switch (action)

case NO_ACTION: /* do nothing */;

case UPDATE: update_environment(result, task); [on master and slave]

case REDO: goto redo;

case CONTINUATION: ; [action defined in section 3.4]

The values of the variables task and result

can be arbitrary, and are de�ned only by the

return values of the user functions get_task()

and do_task(). In elementary applications

of master_slave(), the action will always be

3

NO_ACTION. The reader may wish to consider only

this special case on a �rst reading (in which case the

function update_environment() is not used).

Of the four user-de�ned functions, the rou-

tine get_task() executes on the master, the

routine do_task() on a slave, the routine

get_task_result() on the master, and the routine

update_environment() on the master and each

slave. The system arranges to execute multiple

tasks (one on each slave) at the same time.

In addition to the four user-de�ned functions, the

fundamental concepts of TOP-C are the task, the re-

sult, the action, and the environment. A task con-

sists of a task input or task description, a routine,

do_task() for executing the task, and resulting

modi�cations to be applied to a global data struc-

ture shared among all processors, the environment.

A task description is a user-de�ned data structure

that is the input to a routine, do_task(). The rou-

tine, do_task(), is called with a single argument,

the current task description. The routine may also

read values from the environment. If a program in

TOP-C is to be e�cient, then the large majority of

the CPU time of the algorithm should be spent in

calls to do_task(). This implies, in particular, that

most calls to do_task() should not require time-

consuming updates to the environment.

The return value of do_task() is the result.

This and the original task description are the in-

put parameters for get_task_result(). This lat-

ter routine returns an action that controls fur-

ther options for processing of the task as de-

picted in the �gures. The four possible actions

that can be returned are NO_ACTION, UPDATE, REDO,

and CONTINUATION(param), where param is a user-

de�ned data structure. These options are described

in further detail in the later sections.

The environment is a set of variables, along

with their values, shared among all processors.

More precisely, the environment is the set of

variables whose values are modi�ed by the rou-

tine update_environment(). The SPMD style

of programming allows the environment to be

shared among all processors while requiring no

data declarations by the user. The environ-

ment can usefully include both global variables

and local variables that are in the lexical scope

of update_environment() and one or more of

get_task(), do_task() and get_task_result().

The functions get_task(), do_task() and

get_task_result() may read values from the en-

vironment, but only update_environment() should

be allowed to set values in the environment.

3 Example

The usage of TOP-C is illustrated by an extended

example for naive parallel integer factorization. For

clarity of exposition, we ignore many possible op-

timizations, such as stopping the sieve after test-

ing the square root, and we especially ignore the

existence of more sophisticated factorization algo-

rithms. The reader who has absorbed the lessons of

this section will have no trouble applying them in a

more sophisticated manner.

3.1 A naive, parallel primality test

The following code employs a variation of the

sieve of Eratosthenes, in which previous factors

are not saved. This version uses only the triv-

ial parallelism, but is useful for illustrating the

parallel notation. Note that the global variable

num_to_factor is shared between get_task() and

get_task_result().

static int num_to_factor, last_num;

int IsPrime(num)

{ last_num = 1;

num_to_factor = num;

master_slave(get_task, do_task,

get_task_result, update_environment);

if (num_to_factor == 1) return 0 /* false */;

else return 1 /* true */; }

void *get_task()

{ last_num = last_num + 1;

if (last_num > num_to_factor)

return NOTASK;

return (void *)last_num; }

void *do_task(num)

int num;

{ return (void *)(num_to_factor % num == 0);}

int get_task_result(result, num)

int result, num;

{ if (result == 1 /* true */)

num_to_factor = 1;

return NO_ACTION; }

3.2 Parallel integer factorization

This section introduces several additional

features of TOP-C. This time, the routine

update_environment() is used to maintain uni-

form values of the variable num_to_factor across all

4

processors as part of the global environment. The

same is done for the factors array in this example,

although the latter need not be global.

static int num_to_factor, last_num,

factors[1000];

int *Factor(num)

int num;

{ factors[0]=0;

last_num = 1;

num_to_factor = num;

master_slave(get_task, do_task,

get_task_result, update_environment);

return factors; }

void *get_task()

{ last_num = last_num + 1;

if (last_num > num_to_factor)

return NOTASK;

return (void *)last_num; }

void *do_task(num)

int num;

{ return (void *)(num_to_factor % num == 0);}

int get_task_result(result, num)

int result, num;

{ if (result == 0/* false */)return NO_ACTION;

if (! is_up_to_date()) return REDO;/*(*)*/

return UPDATE; }

void update_environment(result, num)

int result, num;

{ while (num_to_factor % num == 0)

{ factors[++factors[0]] = num;

num_to_factor =

num_to_factor / num; } }

Finding all the factors requires updating an envi-

ronment. Otherwise, a slave would note that both 2

and 4 divide 12, and there is a danger of storing both

factors. Hence, we call update_environment() in

a manner that is clear from section 2.

The function is_up_to_date() returns false

(boolean 0) if and only if update_environment()

has been called by the master during the in-

terval between the time when the master in-

voked get_task() to generate the \task" argu-

ment (num) of do_result() and the time when

get_task_result() was invoked with the same

task num. In the case at hand, if num_to_factor

has changed since the task num was last sent to

do_result(), then is_up_to_date() is guaranteed

to return false.

The starred statement from get_task_result()

should be given special notice:

if (! is_up_to_date()) return REDO;/*(*)*/

It is possible to avoid the use of is_up_to_date().

The master could re-test if num is still a factor of

num_to_factor. The use of is_up_to_date() is

a more e�cient alternative. If num was previously

tested and found not to be a factor, then that will

continue to be the case with respect to the modi�ed

num_to_factor, and so NO_ACTION can be immedi-

ately returned. On the other hand if, for example,

2 was found found to be a factor of 12, and a con-

current task found 4 to be a factor, then the second

concurrent task will be re-executed. The combina-

tion of is_up_to_date() and REDO is a standard

idiom in programming master_slave(). A REDO

action guarantees to send the original task back

to the original slave. This feature can be used to

potentially make do_task more e�cient by locally

caching previously computed data.

3.3 A subtle bug

There is still one bug in the above code. One of

the factors returned might be a composite number

and not a prime. If Factor(12) is invoked, causing

three slaves to examine in parallel the three factors,

2, 3, and 4, then the slave examining the factor 4

might return �rst. In this case, Factor(12) would

return array values {4, 3}. The following modi�-

cations �x this bug.

/* Change line of get_task_result

commented by "(*)": */

if (! is_up_to_date() &&

num > Maximum(factors))

return REDO; /* (*) */

/* Add to beg. of update_environment(): */

if (num < Maximum(factors))

RemoveMultiples(num);

In an e�cient version, one would of course add a

line at the end of update_environment() to cache

and update the latest value of Maximum(factors)

in a static, local variable. The function

RemoveMultiples(num) is de�ned to remove all ele-

ments, x, of the array factors that are multiples of

num. It also updates num_to_factor by multiplying

it by each x. Thus, composite factors are eventually

caught and corrected.

Note an interesting phenomenon. Consider again

the example, Factor(12). In the modi�ed code, if

5

the slave examining the factor 2 were slow to return,

then num_to_factor might take on values, 12, 4,

1, 2. For this reason, the system will always call

get_task() one last time after all slaves have re-

turned, to determine if the last slave has altered

the interim determination that the job is done.

3.4 Other features

There is one other action not previously dis-

cussed. The routine get_task_result() can re-

turn CONTINUATION(next), where next is a second

input. That parameter is returned to the same slave

that generated the task. This feature allows exten-

sions to the basic paradigm. It provides full general-

ity in communication patterns. For example, a slave

can send a question to the master in the middle of

his task. If master and slave follow a common proto-

col, then the master can provide a reply to the slave

via the parameter of the CONTINUATION() action.

One can even design a protocol by which several

slaves communicate with each other, using the mas-

ter a \postmaster". A utility, get_last_source, is

provided for this and other protocols. It allows the

master to determine a unique id for the last slave

that communicated.

For e�ciency reasons, one may also wish to in-

voke is_master(), which returns true if and only

if invoked on the master. This allows one to com-

pute data structures (or read them from a �le) only

on the master if they are particularly expensive of

space or time. Of course, such private data struc-

tures will not be part of the shared environment.

There are other features not discussed here that

can further extend the generality of the TOP-C pro-

gramming model. For shared memory machines, a

utility, ms_barrier(), is o�ered. This is useful in

the context of an update_environment(), since a

slave might be accessing data at the same time that

update_environment() is causing it to be modi-

�ed. Some systems, such as Indigo [17], provide

the applications programmer with �ner control over

sharing of memory, and this could provide a more

e�cient alternative to ms_barrier().

The generality of the system can be further aug-

mented by allowing arbitrary messages directly be-

tween slaves. This eliminates the ine�ciency of the

\postmaster" protocol referred to above. However,

such a drastic departure from the original paradigm

is not recommended, since it risks losing many of

the bene�ts, such as the absence of deadlock and

the total ordering of events through communication

via the master.

4 Features of the TOP-C model of

parallelism

The methodology described here was chosen for

its simplicity, so as to lower the learning barrier for

people in symbolic algebra wishing to write par-

allel code. The TOP-C model �ts many prob-

lems in symbolic algebra, which are weakly inter-

dependent. This means that the environment needs

to be modi�ed only infrequently. Such a property

often achieves nearly linear scalability. The pro-

posed model encourages this property, since modify-

ing the environment requires the user invoke an ad-

ditional routine, update_environment(), through

the UPDATE action. This principle can be codi�ed

into a �gure of merit, �, for weak inter-dependence.

Let T be the total number of tasks executed, N the

number of processes, and M the total number of

times the global data structure needs to be modi-

�ed. Then

� = T=(M �N):

Hence, trivially parallel programs (no task interac-

tion) will have an in�nite value for �.

The model is especially economical in its use of

available communication bandwidth. This is impor-

tant for LAN's and shared memory environments.

An Ethernet-style LAN supports only one packet at

a time (assuming no subnets). On a shared memory

environment, memory contention can restrict simul-

taneous communication by multiple processors.

Applications using TOP-C tend to have small

and infrequent messages that are distributed with-

out sharp bandwidth peaks. The SPMD program-

ming style encourages redundant computation of

large initial data structures on each processor in

parallel, instead of a single computation along with

large messages to propagate the result. Further,

communication and computation phases on distinct

slaves will tend to overlap as slaves become out of

phase with each other.

Total communication requirements can be higher

after an UPDATE action, when large simultaneous

messages might be sent to all slaves. However,

broadcast messages can be optimized for lower over-

head. In the case of Ethernet, this implies broad-

cast packets. In the case of shared memory, a sin-

gle shared copy can be written to memory. Similar

strategies are available on other networks.

The TOP-C model shares some of the features of

other models. As with the RPC model, TOP-C is

deadlock-free. As with the distributed shared mem-

ory (DSM) model, a user can run the same code, un-

changed, on both distributed and shared memory

6

architectures. It also has a single shared environ-

ment, in common with the DSM model. Neverthe-

less, TOP-C is distinguished from DSM in that the

user interrogate the system (via is_up_to_date())

whether the latest shared environment is available,

and he/she chooses whether to wait for the lastest

update of the environment (via a REDO action) or

whether to make use of the currently available en-

vironment (possibly via an UPDATE action).

The task-parallel model presents a cousin of this

model. For the sake of concreteness, we con-

sider CC++ [2] (Compositional C++) and For-

tran M [1, 11] (along with the Nexus runtime sys-

tem [12]) as examples of task-parallel environments.

The biggest di�erences are that TOP-C encourages

the user to maintain a single, environment (data

structure) uniformly across all processors, and com-

munication is more restrictive in TOP-C, as com-

pared to the channels of CC++ or Fortran M.

TOP-C shares both with RPC and with For-

tran M and CC++ the property that the primary

user concern is to specify a task and de�ne the task

input and the task output. This relieves the user

from some of the lower level concerns. Heteroge-

neous processing in TOP-C is not as easy to express

as in Fortran M and CC++, but one can easily pro-

gram heterogeneous tasks. Heterogeneous tasks in

TOP-C are programmed by adding a case parame-

ter to the task description that speci�es which task

is desired. The routine do_task() uses this param-

eter to dispatch to the correct task.

5 Tracing and Debugging

The following strategies have been found to

be valuable for code development and debugging.

First, one should replace the standard TOP-C li-

brary with a provided �le, mas-slave-seq.c, which is

a generalization of the sequential code in section 2.

This reduces the application to a completely sequen-

tial program without change to the user's applica-

tion code, thus allowing the user to quickly distin-

guish parallel logic errors from sequential logic er-

rors.

The �rst stage of parallel development is to use

one master and one slave. If possible, the mas-

ter and slave should be the same CPU, so as to

minimize network delays and ill e�ects on other

users. When that code works correctly, it can then

be tested on two slaves, and �nally on all possible

slaves.

Another easy testing strategy is to trace all mes-

sages to and from the master. One can cause each

task description to be printed in the order that it is

seen by the master by setting the following variable:

master_slave_trace = true;

If this produces too much output, or not the right

kind of information, one can add print statements

both on master or slave. Shared memory imple-

mentations allow printing from all processors, and

the MPICH implementation of MPI also arranges

for output from all processes to be printed on the

user console. Of course, output from a slave can ap-

pear asynchronously with the master's output, since

it must go through the master's processor to reach

the user console.

6 Implementation

The implementation has been kept small and

simple to enhance portability and maintainability.

It requires two layers of code, with the user appli-

cation constituting a third and highest layer. In the

case of shared memory, the lowest layer is a simple

implementation of message passing using the SGI,

Solaris, or POSIX system calls for threads. This

layer contains all computer vendor-speci�c portions.

It consists of 350 lines of code.

In the case of the distributed memory imple-

mentation, this lowest layer is an interface to MPI

(Message Passing Interface) [13, 14] providing the

same services as the shared memory layer. Because

the use of MPI is largely restricted to point-to-

point communication, it would be easy to replace

this with an alternative message-passing implemen-

tation. The package described here has been imple-

mented using the MPICH implementation [10]. The

distributed memory version of this layer consists of

200 lines of code.

Binary data format is an issue especially for dis-

tributed memory in a heterogeneous environment.

Although MPI provides some facilities for data stor-

age independent of vendor byte ordering, etc., use of

this for C struct and union would add considerable

complexity. Currently, one compiles the package

with a user-chosen default type (char, int or oat),

and any type that is not the default must by cast

by the user. MPI automatically addresses di�er-

ent binary formats for int and oat, but the user is

responsible for heterogeneous computing with com-

pound data types, such as struct and union.

The second layer implements the master-slave

architecture in a vendor-independent manner, and

independently of issues of shared vs. distributed

memory. It consists of 450 lines of code.

7

The highest layer is the user application. The ex-

ample of the previous sections provides an excellent

description of this layer.

7 Timings

7.1 Parallel facilities and experimental
methodology

Experiments were carried out on two shared

memory and one distributed memory architecture.

The �rst shared memory architecture was Boston

University's SGI Power Challenger Array. That

computer consists of 18 R8000 CPU's, each running

at 90MHz. The CPU's share 2 gigabytes of 8 way

interleaved memory. The second shared memory ar-

chitecture was the Boston University SPARC-1000

with 4 CPU's under Solaris 2.4. The third architec-

ture was a cluster of up to 8 alpha workstations on

a fast DEC ring network. All machines were lightly

loaded, except for the DEC cluster where machines

typically had one other CPU intensive job running.

On all architectures, the TOP-C sequential emula-

tor was run using the same factorization code.

A variation of the factorization program in sec-

tion 3.2 was used for testing. The main di�erence in

the testing version was that a task was re-de�ned to

test the next 10,000 candidate factors, so as to min-

imize the ratio of communication overhead to task

execution time. Two suites of examples were cho-

sen. The �rst suite consisted entirely of primes, and

the program reduced to one of trivial parallelism.

The second suite consisted of 10 random integers in

the stated range, and average elapsed times for a

random input were determined. The random inte-

gers were generated once only and the same integers

were used on all architectures.

There was also an issue of which numbers to re-

port as relevant. In reporting overall statistics, we

chose to consider the total elapsed time.

We also review the results of a more sophisticated

application, Todd-Coxeter coset enumeration. The

full details are reported in [6]. The Felsch strategy

was used, and computations were carried out on the

SGI computer. TOP-C was used to parallelize pre-

viously developed sequential code by M. Sch�onert.

The group studied was T , which plays an impor-

tant role in the proof that Engel-4 groups of ex-

ponent 5 are locally �nite. There are close con-

nections between the Todd-Coxeter algorithm and

the Knuth-Bendix algorithm. There were 45,000

tasks performed. The parallel calculation was non-

deterministic, but all runs computed a number of

cosets that was close to that for the sequential pro-

gram.

7.2 Results

The number 100,000,007 was checked for being

prime. Every number through 100,000,007 was

checked as a factor. There was perfect parallelism

since no factors were found. The times are all mea-

sured by the UNIX shell time command. All times

are in seconds. The numbers for the alpha cluster

are less reproducible due to variable loadings from

other jobs. Nevertheless, it is clear from the table

that roughly linear speedup is obtained.

The two columns for the SPARC 1000 represent

elapsed (real) time versus total CPU time among

all processors. The starred number for the SPARC

1000 is interesting because that machine had only 4

processors. Yet 15 threads ran approximately twice

as fast as 4 threads on a lightly loaded machine.

Presumably this is accounted for by more opportu-

nities to overlap computation and memory access,

leading to fuller bus utilization.

slaves SGI SPARC SPARC Alpha

1000 1000 cluster

(elaps.) (total)

SEQ 43 111 111 206

1 slave 57 298 98 252

2 slaves 34 154 100 157

3 slaves 23 99 101 114

4 slaves 18 68 102 89

5 slaves 14 - - 76

8 slaves - - - 58

10 slaves 7 - - -

15 slaves 5 (�)32 112 -

We also chose 10 random numbers in the range

100,000,000 to 100,000,100. Only one case required

a signi�cant amount of CPU time (3�33; 333; 347).

As one would expect, the time was about 1/3 of the

previous time for all architectures. The next largest

factorization occurred as 3 � 5 � 7 � 952; 381, and

the times were again reduced by a ratio of about

105 = 3 � 5 � 7. In general, there was weak task

inter-dependence for typical random numbers and

one sees nearly linear speedup.

Finally the results from Todd-Coxeter Enumera-

tion [6] are reported.

Todd-Coxeter Coset Enum. (Felsch Strategy)

8

Enumeration Time (sec)

1 slave 219

2 slaves 129

3 slaves 99

4 slaves 78

5 slaves 62

10 slaves 38

15 slaves 29

8 Future Work

The current version is freely available in the ftp

directory:

ftp.ccs.neu.edu:/pub/people/gene/top-c/

A future version is planned that will encompass

both shared and distributed memory architectures

as part of a single computational model. Since the

model presented in this paper uses the same mech-

anism for both memory models, it should be ideally

suited to such an undertaking. Further, by "shar-

ing" the distributed memory at the task level, it

should present a higher level alternative to the user-

level sharing of distributed memory that is discussed

in [17].

9 Acknowledgements

The author gratefully acknowledges Boston Uni-

versity for the use of the SPARC-1000 and SGI

Power Challenger Array.

References

[1] K.M. Chandy, I. Foster, K. Kennedy, C. Koel-

bel, and C.-W. Tseng, \Integrated Support for

Task and Data Parallelism", Intl. J. Supercom-

puter Applications, 1994 (to appear).

[2] K.M. Chandy and C. Kesselman, \Composi-

tional C++: Compositional Programming",

Proceedings of the Fourth Workshop on Paral-

lel Programming and Compilers, Springer Ver-

lag.

[3] G. Cooperman, \GAP/MPI: Facilitating Par-

allelism", Proceedings of DIMACS Workshop

on Groups and Computation (held at Rutgers

University, June 7{10, 1995), 1996, to appear.

[4] G. Cooperman, \STAR/MPI: Binding a Par-

allel Library to Interactive Symbolic Algebra

Systems", Proc. of International Symposium

on Symbolic and Algebraic Computation (IS-

SAC '95), ACM Press, pp. 126{132.

[5] G. Cooperman, L. Finkelstein, M. Tselman,

B. York, Constructing Permutation Represen-

tations for Matrix Groups, Proc. of Inter-

national Symposium on Symbolic and Alge-

braic Computation (ISSAC '94), ACM Press,

pp. 134{138.

[6] G. Cooperman and G. Havas, \Practical par-

allel coset enumeration", preprint, submitted

to Proc. Workshop on High Performance Com-

puting and Gigabit Local Area Networks, Lec-

ture Notes in Control and Information Sci-

ences, Springer-Verlag.

[7] G. Cooperman and M. Tselman, \New Sequen-

tial and Parallel Algorithms for Generating

High Dimension Hecke Algebras using the Con-

densation Technique", Proc. of International

Symposium on Symbolic and Algebraic Com-

putation (ISSAC '96), ACM Press, to appear,

[8] J. Della Dora and J. Fitch, eds., Computer Al-

gebra and Parallelism, Academic Press, 1989.

(Proc. CAP '88, Grenoble, France, June 1988).

[9] A. Diaz, E. Kaltofen, K. Schmitz and T. Va-

lente, \A System for Distributed Symbolic

Computation", Proc. of Int. Symp. on Sym-

bolic and Algebraic Computation (ISSAC-91),

ACM Press, 1991, pp. 323{332.

[10] N. Doss, W. Gropp, R. Lusk and A. Skjellum,

software at info.mcs.anl.gov in

/pub/mpi/mpich-Jul22.tar.gZ, anonymous ftp.

[11] I. Foster and K.M. Chandy, \Fortran M: A

Language for Modular Parallel Programming",

J. Parallel and Dist. Comput., 1994 (to ap-

pear).

[12] I. Foster, C. Kesselman and S. Tuecke, \The

Nexus Task-parallel Runtime System", Proc.

1st Intl Workshop on Parallel Processing, 1994.

[13] W. Gropp, E. Lusk and A. Skjellum, Using

MPI, MIT Press, 1994.

[14] Message Passing Interface Forum (author),

\MPI: A Message-Passing Interface Standard",

International Journal of Supercomputing Ap-

plications 8, Number 3/4, 1994.

[15] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,

R. Manchek and V. Sunderam, PVM: Parallel

Virtual Machine: A Users' Guide and Tutorial

for Networked Parallel Computing, MIT Press,

1994.

9

[16] J.-L. Roch, P. Senechaud, F. Siebert-Roch, and

G. Villard, \Computer Algebra on a MIMD

Machine", Proc. Int. Symp. on Symbolic and

Algebraic Comp. (ISSAC '88), Lecture Notes in

Computer Science 358, Springer Verlag, 1988,

pp. 423{439.

[17] P. Kohli, M. Ahamad and K. Schwan, \Indigo:

User-level Support for Building Distributed

Shared Abstractions", Proc. of High Perfor-

mance Distributed Computing '95 (HPDC-4),

IEEE, 1995.

[18] M. Sch�onert et al., GAP { Groups, Algorithms

and Programming (Manual), Lehrstuhl D f�ur

Mathematik, RWTH, Aachen, Germany, 1995.

[19] C.C. Sims, \Computation with Permutation

Groups", in Proc. Second Symposium on Sym-

bolic and Algebraic Manipulation, edited by

S.R. Petrick, ACM Press, New York, 1971,

pp. 23{28.

[20] Michael Tselman, \Computing permutation

representations for matrix groups in a

distributed environment", Proceedings of DI-

MACS Workshop on Groups and Computation

(held at Rutgers University, June 7{10, 1995),

1996, to appear.

[21] G. Zacharias, A Groebner basis implementa-

tion in LISP, version 202.

[22] R. Zippel, ed., Computer Algebra and Par-

allelism, Lecture Notes in Computer Sci-

ence 584, Springer Verlag, 1992, pp. 1{18.

(Proc. of CAP'90, Ithaca, NY, June, 1990).

10

